login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A122542
Triangle T(n,k), 0 <= k <= n, read by rows, given by [0, 2, -1, 0, 0, 0, 0, 0, ...] DELTA [1, 0, 0, 0, 0, 0, 0, 0, ...] where DELTA is the operator defined in A084938.
27
1, 0, 1, 0, 2, 1, 0, 2, 4, 1, 0, 2, 8, 6, 1, 0, 2, 12, 18, 8, 1, 0, 2, 16, 38, 32, 10, 1, 0, 2, 20, 66, 88, 50, 12, 1, 0, 2, 24, 102, 192, 170, 72, 14, 1, 0, 2, 28, 146, 360, 450, 292, 98, 16, 1, 0, 2, 32, 198, 608, 1002, 912, 462, 128, 18, 1
OFFSET
0,5
COMMENTS
Riordan array (1, x*(1+x)/(1-x)). Rising and falling diagonals are the tribonacci numbers A000213, A001590.
LINKS
Bela Bajnok, Additive Combinatorics: A Menu of Research Problems, arXiv:1705.07444 [math.NT], May 2017. See Sect. 2.3.
Huyile Liang, Yanni Pei, and Yi Wang, Analytic combinatorics of coordination numbers of cubic lattices, arXiv:2302.11856 [math.CO], 2023. See p. 1.
FORMULA
Sum_{k=0..n} x^k*T(n,k) = A000007(n), A001333(n), A104934(n), A122558(n), A122690(n), A091928(n) for x = 0, 1, 2, 3, 4, 5. - Philippe Deléham, Jan 25 2012
Sum_{k=0..n} 3^(n-k)*T(n,k) = A086901(n).
Sum_{k=0..n} 2^(n-k)*T(n,k) = A007483(n-1), n >= 1. - Philippe Deléham, Oct 08 2006
T(2*n, n) = A123164(n).
T(n, k) = T(n-1,k) + T(n-1,k-1) + T(n-2,k-1), n > 1. - Philippe Deléham, Jan 25 2012
G.f.: (1-x)/(1-(1+y)*x-y*x^2). - Philippe Deléham, Mar 02 2012
From G. C. Greubel, Oct 27 2024: (Start)
Sum_{k=0..n} (-1)^k*T(n, k) = A057077(n).
Sum_{k=0..floor(n/2)} T(n-k, k) = A001590(n+1).
Sum_{k=0..floor(n/2)} (-1)^k*T(n-k, k) = A078016(n). (End)
EXAMPLE
Triangle begins:
1;
0, 1;
0, 2, 1;
0, 2, 4, 1;
0, 2, 8, 6, 1;
0, 2, 12, 18, 8, 1;
0, 2, 16, 38, 32, 10, 1;
0, 2, 20, 66, 88, 50, 12, 1;
0, 2, 24, 102, 192, 170, 72, 14, 1;
0, 2, 28, 146, 360, 450, 292, 98, 16, 1;
0, 2, 32, 198, 608, 1002, 912, 462, 128, 18, 1;
MATHEMATICA
CoefficientList[#, y]& /@ CoefficientList[(1-x)/(1 - (1+y)x - y x^2) + O[x]^11, x] // Flatten (* Jean-François Alcover, Sep 09 2018 *)
(* Second program *)
T[n_, k_]:= T[n, k]= If[k==n, 1, If[k==0, 0, T[n-1, k-1] +T[n-1, k] +T[n-2, k- 1] ]]; (* T = A122542 *)
Table[T[n, k], {n, 0, 12}, {k, 0, n}]//Flatten (* G. C. Greubel, Oct 27 2024 *)
PROG
(Haskell)
a122542 n k = a122542_tabl !! n !! k
a122542_row n = a122542_tabl !! n
a122542_tabl = map fst $ iterate
(\(us, vs) -> (vs, zipWith (+) ([0] ++ us ++ [0]) $
zipWith (+) ([0] ++ vs) (vs ++ [0]))) ([1], [0, 1])
-- Reinhard Zumkeller, Jul 20 2013, Apr 17 2013
(Sage)
def A122542_row(n):
@cached_function
def prec(n, k):
if k==n: return 1
if k==0: return 0
return prec(n-1, k-1)+2*sum(prec(n-i, k-1) for i in (2..n-k+1))
return [prec(n, k) for k in (0..n)]
for n in (0..10): print(A122542_row(n)) # Peter Luschny, Mar 16 2016
(Magma)
function T(n, k) // T = A122542
if k eq 0 then return 0^n;
elif k eq n then return 1;
else return T(n-1, k) + T(n-1, k-1) + T(n-2, k-1);
end if;
end function;
[T(n, k): k in [0..n], n in [0..12]]; // G. C. Greubel, Oct 27 2024
CROSSREFS
Other versions: A035607, A113413, A119800, A266213.
Sums include: A000007, A001333 (row), A001590 (diagonal), A007483, A057077 (signed row), A078016 (signed diagonal), A086901, A091928, A104934, A122558, A122690.
Sequence in context: A206022 A115247 A204163 * A227341 A098542 A320019
KEYWORD
nonn,tabl
AUTHOR
Philippe Deléham, Sep 19 2006, May 28 2007
STATUS
approved