login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A059283
Triangle T(n,k) (0<= k <=n) read by rows. Left edge is 1, 0, 0, ... Otherwise each entry is sum of entry to left, entries immediately above it to left and right and entry directly above it 2 rows back.
8
1, 0, 1, 0, 2, 3, 0, 2, 8, 11, 0, 2, 14, 36, 47, 0, 2, 20, 78, 172, 219, 0, 2, 26, 138, 424, 862, 1081, 0, 2, 32, 216, 856, 2314, 4476, 5557, 0, 2, 38, 312, 1522, 5116, 12768, 23882, 29439, 0, 2, 44, 426, 2476, 9970, 30168, 71294, 130172, 159611, 0, 2, 50, 558
OFFSET
0,5
LINKS
FORMULA
T(0, 0)=1; T(n, 0)=0, n>0; T(n, k)=T(n, k-1)+T(n-1, k-1)+T(n-1, k)+T(n-2, k-1), n, k>0
G.f. for T(n, k): ((1+2*w+w^2)*z^2+(-1-2*w-w^2)*z-w*(-3*w^2-6*w+1)^(1/2)+2*w)/(1+w)^2/((1+w)*z^2+(w-1)*z+w) (expand first as series in z, then in w).
EXAMPLE
1; 0,1; 0,2,3; 0,2,8,11; 0,2,14,36,47; ... [36 = 14 + 8 + 11 + 3 for example].
MATHEMATICA
t[0, 0] = 1; t[_, 0] = 0; t[n_, k_] /; 0 <= k <= n := t[n, k] = t[n, k-1] + t[n-1, k-1] + t[n-1, k] + t[n-2, k-1]; t[_, _] = 0; Table[t[n, k], {n, 0, 10}, {k, 0, n}] // Flatten (* Jean-François Alcover, Oct 11 2013 *)
PROG
(Haskell)
a059283 n k = a059283_tabl !! n !! k
a059283_row n = a059283_tabl !! n
a059283_tabl = [1] : [0, 1] : f [1] [0, 1] where
f us vs = ws : f vs ws where
ws = scanl1 (+) $ zipWith (+)
([0]++us++[0]) $ zipWith (+) ([0]++vs) (vs++[0])
-- Reinhard Zumkeller, Apr 17 2013
CROSSREFS
Right edge is A059284. Cf. A059226.
Cf. A224729 (central terms), A122542.
Sequence in context: A167925 A209927 A354077 * A160202 A195673 A339674
KEYWORD
nonn,tabl,easy,nice
AUTHOR
N. J. A. Sloane, Jan 24 2001
EXTENSIONS
More terms from Larry Reeves (larryr(AT)acm.org), Jan 25 2001
STATUS
approved