login
A059281
E.g.f.: ((1-x)/(1-2*x)) * exp(x*(1-x)/(1-2*x)).
1
1, 2, 9, 64, 605, 7086, 98797, 1595924, 29284089, 601272730, 13651820561, 339496984872, 9174493428949, 267642371288774, 8381229378694005, 280370739660951676, 9976870946519220977, 376253084610805878834, 14988616155347856524569
OFFSET
0,2
LINKS
FORMULA
a(n) ~ 2^(n-1)*exp(1/8+sqrt(n)-n)*n^(n+1/4) * (1 + 73/(96*sqrt(n))). - Vaclav Kotesovec, Jun 27 2013
Recurrence (for n>4): (n-4)*a(n) = (4*n^2 - 17*n + 7)*a(n-1) - 2*(n-1)*(2*n^2 - 9*n + 8)*a(n-2) + 2*(n-3)*(n-2)*(n-1)*a(n-3). - Vaclav Kotesovec, Jun 27 2013
MATHEMATICA
CoefficientList[Series[((1-x)/(1-2*x))*E^(x*(1-x)/(1-2*x)), {x, 0, 20}], x]* Range[0, 20]! (* Vaclav Kotesovec, Jun 27 2013 *)
CROSSREFS
Sequence in context: A274394 A368291 A113882 * A269612 A269577 A268104
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, Jan 24 2001
STATUS
approved