

A167925


A triangular sequence of the Matrix Markov type based on the 2x2 matrix: m={{a,1},{1,1}}; which has determinant equal to trace.


1



0, 1, 1, 1, 2, 3, 0, 2, 6, 12, 1, 0, 9, 32, 75, 1, 4, 9, 80, 275, 684, 0, 8, 0, 192, 1000, 3240, 8232, 1, 8, 27, 448, 3625, 15336, 47677, 122368, 1, 0, 81, 1024, 13125, 72576, 276115, 835584, 2158569, 0, 16, 162, 2304, 47500, 343440, 1599066
(list;
table;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

0,5


COMMENTS

Row sums are:
{0, 2, 6, 20, 115, 1043, 12656, 189420, 3356913, 68661516, 1591360540,...}
Each row is a specific Markov sequence with a different limiting ratio.
Conjecture: a(6),a(7),a(8),a(9)=coefficient of x^2 in the Maclaurin expansion of 1/(n*x^2+n*x+1) for n=1,2,3,4; a(10),a(11),a(12),a(13),a(14)=coefficient of x^3 in the Maclaurin expansion of 1/(n*x^2+n*x+1) for n=1,2,3,4,5; a(15),a(16),a(17),a(18),a(19),a(20)=coefficient of x^4 in the Maclaurin expansion of 1/(n*x^2+n*x+1) for n=1,2,3,4,5,6; a(21),a(22),a(23),a(24),a(25),a(26),a(27)=coefficient of x^5 in the Maclaurin expansion of 1/(n*x^2+n*x+1) for n=1,2,3,4,5,6,7. Etc... [From Francesco Daddi, Aug 04 2011]


LINKS

Table of n, a(n) for n=0..51.


EXAMPLE

{0},
{1, 1},
{1, 2, 3},
{0, 2, 6, 12},
{1, 0, 9, 32, 75},
{1, 4, 9, 80, 275, 684},
{0, 8, 0, 192, 1000, 3240, 8232},
{1, 8, 27, 448, 3625, 15336, 47677, 122368},
{1, 0, 81, 1024, 13125, 72576, 276115, 835584, 2158569},
{0, 16, 162, 2304, 47500, 343440, 1599066, 5705728, 16953624, 44010000},
{1, 32, 243, 5120, 171875, 1625184, 9260657, 38961152, 133155495, 390500000, 1017681269}


MATHEMATICA

Clear[m, a, n, v];
m = {{a, 1}, {1, 1}};
v[0] := {0, 1};
v[n_] := v[n] = m.v[n  1];
Table[v[n][[1]], {n, 0, 10}, {a, 0, n}];
Flatten[%]


CROSSREFS

Sequence in context: A194745 A002392 A002708 * A209927 A059283 A160202
Adjacent sequences: A167922 A167923 A167924 * A167926 A167927 A167928


KEYWORD

sign,tabl,uned


AUTHOR

Roger L. Bagula, Nov 15 2009


STATUS

approved



