login
This site is supported by donations to The OEIS Foundation.

 

Logo

Annual Appeal: Today, Nov 11 2014, is the 4th anniversary of the launch of the new OEIS web site. 70,000 sequences have been added in these four years, all edited by volunteers. Please make a donation (tax deductible in the US) to help keep the OEIS running.

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A104934 G.f.: (1-x)/(1-3*x-2*x^2). 11
1, 2, 8, 28, 100, 356, 1268, 4516, 16084, 57284, 204020, 726628, 2587924, 9217028, 32826932, 116914852, 416398420, 1483024964, 5281871732, 18811665124, 66998738836, 238619546756, 849856117940, 3026807447332 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

COMMENTS

A floretion-generated sequence relating A007482, A007483, A007484. Inverse is A046717. Inverse of Fibonacci(3n+1), A033887. Binomial transform is A052984. Inverse binomial transform is A006131. Note: the conjectured relation 2*a(n) = A007482(n) + A007483(n-1) is a result of the FAMP identity dia[I] + dia[J] + dia[K] = jes + fam

a(n) is also the number of ways to build a (2 x 2 x n)-tower using (2 x 1 x 1)-bricks (see Exercise 3.15 in Aigner's book). [From Vania Mascioni (vmascioni(AT)bsu.edu), Mar 09 2009]

a(n) is the number of compositions of n when there are 2 types of 1 and 4 types of other natural numbers. [From Milan Janjic, Aug 13 2010]

Pisano period lengths: 1, 1, 4, 1, 24, 4, 48, 1, 12, 24, 30, 4, 12, 48, 24, 1,272, 12, 18, 24,... - R. J. Mathar, Aug 10 2012

REFERENCES

M. Aigner, A Course in Enumeration, Springer, 2007, p.103. [From Vania Mascioni (vmascioni(AT)bsu.edu), Mar 09 2009]

LINKS

Table of n, a(n) for n=0..23.

Index entries for sequences related to linear recurrences with constant coefficients, signature (3,2)

FORMULA

Define A007483(-1) = 1. Then 2*a(n) = A007482(n) + A007483(n-1) (conjecture) a(n+2) = 4*A007484(n); ( Thus 8*A007484(n) = A007482(n+2) + A007483(n+1) ) a(n+1) = 2*A055099(n); a(n+2) - a(n+1) - a(n) = A007484(n+1) - A007484(n)

a(0)=1, a(1)=2, a(n)=3*a(n-1)+2*a(n-2) for n>1 . - Philippe Deléham, Sep 19 2006

a(n) = Sum_{k, 0<=k<=n}2^k*A122542(n,k) . - Philippe Deléham, Oct 08 2006

a(n) = (1/2)*[(3/2)+(1/2)*sqrt(17)]^n-(1/34)*sqrt(17)*[(3/2)-(1/2)*sqrt(17)]^n+(1/34)*[(3/2)+(1/2) *sqrt(17)]^n*sqrt(17)+(1/2)*[(3/2)-(1/2)*sqrt(17)]^n, with n>=0 [From Paolo P. Lava, Nov 19 2008]

a(n) = ((17+sqrt(17))/34)*(0.5*sqrt(17)+1.5)^n+((17-sqrt(17))/34)*(-0.5*sqrt(17)+1.5)^n [From Richard Choulet, Nov 19 2008]

a(n) = 2*a(n-1)+4*sum(k=0..n-2, a(k) ) for n>0. [From Vania Mascioni (vmascioni(AT)bsu.edu), Mar 09 2009]

G.f.: 1/(1 - 2*x*(1+x)*Q(0)), where Q(k)= 1 + (4*k+1)*x*(1-x)/(k+1 - x*(1-x)*(2*k+2)*(4*k+3)/(2*x*(1-x)*(4*k+3)+(2*k+3)/Q(k+1))); (continued fraction). - Sergei N. Gladkovskii, May 14 2013

PROG

Floretion Algebra Multiplication Program, FAMP Code: 1dia[I]tesseq[A*B] with A = - .25'i + .25'j + .25'k - .25i' + .25j' + .25k' - .25'ii' + .25'jj' + .25'kk' + .25'ij' + .25'ik' + .25'ji' + .25'jk' + .25'ki' + .25'kj' - .25e and B = + 'i + i' + 'ji' + 'ki' + e

CROSSREFS

Cf. A007484, A007483, A007482, A104935, A055099, A046717, A052984, A006131.

Sequence in context: A060995 A106731 A066796 * A056711 A114590 A133592

Adjacent sequences:  A104931 A104932 A104933 * A104935 A104936 A104937

KEYWORD

nonn

AUTHOR

Creighton Dement, Mar 29 2005

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

Content is available under The OEIS End-User License Agreement .

Last modified December 21 23:06 EST 2014. Contains 252326 sequences.