login
This site is supported by donations to The OEIS Foundation.

 

Logo

Annual Appeal: Please make a donation (tax deductible in USA) to keep the OEIS running. Over 5000 articles have referenced us, often saying "we discovered this result with the help of the OEIS".

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A104934 G.f.: (1-x)/(1-3*x-2*x^2). 11
1, 2, 8, 28, 100, 356, 1268, 4516, 16084, 57284, 204020, 726628, 2587924, 9217028, 32826932, 116914852, 416398420, 1483024964, 5281871732, 18811665124, 66998738836, 238619546756, 849856117940, 3026807447332 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

COMMENTS

A floretion-generated sequence relating A007482, A007483, A007484. Inverse is A046717. Inverse of Fibonacci(3n+1), A033887. Binomial transform is A052984. Inverse binomial transform is A006131. Note: the conjectured relation 2*a(n) = A007482(n) + A007483(n-1) is a result of the FAMP identity dia[I] + dia[J] + dia[K] = jes + fam

a(n) is also the number of ways to build a (2 x 2 x n)-tower using (2 x 1 x 1)-bricks (see Exercise 3.15 in Aigner's book). [From Vania Mascioni (vmascioni(AT)bsu.edu), Mar 09 2009]

a(n) is the number of compositions of n when there are 2 types of 1 and 4 types of other natural numbers. - Milan Janjic, Aug 13 2010

Pisano period lengths: 1, 1, 4, 1, 24, 4, 48, 1, 12, 24, 30, 4, 12, 48, 24, 1,272, 12, 18, 24,... - R. J. Mathar, Aug 10 2012

REFERENCES

M. Aigner, A Course in Enumeration, Springer, 2007, p.103.

LINKS

Table of n, a(n) for n=0..23.

Index entries for linear recurrences with constant coefficients, signature (3,2)

FORMULA

Define A007483(-1) = 1. Then 2*a(n) = A007482(n) + A007483(n-1) (conjecture) a(n+2) = 4*A007484(n); ( Thus 8*A007484(n) = A007482(n+2) + A007483(n+1) ) a(n+1) = 2*A055099(n); a(n+2) - a(n+1) - a(n) = A007484(n+1) - A007484(n)

a(0)=1, a(1)=2, a(n)=3*a(n-1)+2*a(n-2) for n>1 . - Philippe Deléham, Sep 19 2006

a(n) = Sum_{k, 0<=k<=n}2^k*A122542(n,k) . - Philippe Deléham, Oct 08 2006

a(n) = (1/2)*[(3/2)+(1/2)*sqrt(17)]^n-(1/34)*sqrt(17)*[(3/2)-(1/2)*sqrt(17)]^n+(1/34)*[(3/2)+(1/2) *sqrt(17)]^n*sqrt(17)+(1/2)*[(3/2)-(1/2)*sqrt(17)]^n, with n>=0 - Paolo P. Lava, Nov 19 2008

a(n) = ((17+sqrt(17))/34)*(0.5*sqrt(17)+1.5)^n+((17-sqrt(17))/34)*(-0.5*sqrt(17)+1.5)^n - Richard Choulet, Nov 19 2008

a(n) = 2*a(n-1)+4*sum(k=0..n-2, a(k) ) for n>0. [From Vania Mascioni (vmascioni(AT)bsu.edu), Mar 09 2009]

G.f.: 1/(1 - 2*x*(1+x)*Q(0)), where Q(k)= 1 + (4*k+1)*x*(1-x)/(k+1 - x*(1-x)*(2*k+2)*(4*k+3)/(2*x*(1-x)*(4*k+3)+(2*k+3)/Q(k+1))); (continued fraction). - Sergei N. Gladkovskii, May 14 2013

PROG

Floretion Algebra Multiplication Program, FAMP Code: 1dia[I]tesseq[A*B] with A = - .25'i + .25'j + .25'k - .25i' + .25j' + .25k' - .25'ii' + .25'jj' + .25'kk' + .25'ij' + .25'ik' + .25'ji' + .25'jk' + .25'ki' + .25'kj' - .25e and B = + 'i + i' + 'ji' + 'ki' + e

(PARI) a(n)=([0, 1; 2, 3]^n*[1; 2])[1, 1] \\ Charles R Greathouse IV, Jun 20 2015

CROSSREFS

Cf. A007484, A007483, A007482, A104935, A055099, A046717, A052984, A006131.

Sequence in context: A106731 A277653 A066796 * A056711 A114590 A133592

Adjacent sequences:  A104931 A104932 A104933 * A104935 A104936 A104937

KEYWORD

nonn,easy

AUTHOR

Creighton Dement, Mar 29 2005

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified December 2 21:20 EST 2016. Contains 278694 sequences.