login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A104934 Expansion of (1-x)/(1 - 3*x - 2*x^2). 12
1, 2, 8, 28, 100, 356, 1268, 4516, 16084, 57284, 204020, 726628, 2587924, 9217028, 32826932, 116914852, 416398420, 1483024964, 5281871732, 18811665124, 66998738836, 238619546756, 849856117940, 3026807447332, 10780134577876, 38394018628292, 136742325040628, 487015012378468, 1734529687216660 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

COMMENTS

A floretion-generated sequence relating A007482, A007483, A007484. Inverse is A046717. Inverse of Fibonacci(3n+1), A033887. Binomial transform is A052984. Inverse binomial transform is A006131. Note: the conjectured relation 2*a(n) = A007482(n) + A007483(n-1) is a result of the FAMP identity dia[I] + dia[J] + dia[K] = jes + fam

a(n) is also the number of ways to build a (2 x 2 x n)-tower using (2 X 1 X 1)-bricks (see Exercise 3.15 in Aigner's book). - Vania Mascioni (vmascioni(AT)bsu.edu), Mar 09 2009

a(n) is the number of compositions of n when there are 2 types of 1 and 4 types of other natural numbers. - Milan Janjic, Aug 13 2010

Pisano period lengths: 1, 1, 4, 1, 24, 4, 48, 1, 12, 24, 30, 4, 12, 48, 24, 1,272, 12, 18, 24, ... - R. J. Mathar, Aug 10 2012

REFERENCES

M. Aigner, A Course in Enumeration, Springer, 2007, p.103.

LINKS

Vincenzo Librandi, Table of n, a(n) for n = 0..1000

I. M. Gessel, Ji Li, Compositions and Fibonacci identities, J. Int. Seq. 16 (2013) 13.4.5

Index entries for linear recurrences with constant coefficients, signature (3,2)

FORMULA

Define A007483(-1) = 1. Then 2*a(n) = A007482(n) + A007483(n-1) (conjecture);

  a(n+2) = 4*A007484(n) (thus 8*A007484(n) = A007482(n+2) + A007483(n+1));

  a(n+1) = 2*A055099(n);

  a(n+2) - a(n+1) - a(n) = A007484(n+1) - A007484(n).

a(0)=1, a(1)=2, a(n) = 3*a(n-1) + 2*a(n-2) for n > 1. - Philippe Deléham, Sep 19 2006

a(n) = Sum_{k=0..n} 2^k*A122542(n,k). - Philippe Deléham, Oct 08 2006

a(n) = (1/2)*(3/2 + (1/2)*sqrt(17))^n - (1/34)*sqrt(17)*(3/2 - (1/2)*sqrt(17))^n + (1/34)*(3/2 + (1/2)*sqrt(17))^n*sqrt(17) + (1/2)*(3/2 - (1/2)*sqrt(17))^n, with n >= 0. - Paolo P. Lava, Nov 19 2008

a(n) = ((17+sqrt(17))/34)*(0.5*sqrt(17)+1.5)^n + ((17-sqrt(17))/34)*(-0.5*sqrt(17)+1.5)^n. - Richard Choulet, Nov 19 2008

a(n) = 2*a(n-1) + 4*Sum_{k=0..n-2} a(k) for n > 0. - Vania Mascioni (vmascioni(AT)bsu.edu), Mar 09 2009

G.f.: (1-x)/(1-3*x-2*x^2). - M. F. Hasler, Jul 12 2018

MATHEMATICA

LinearRecurrence[{3, 2}, {1, 2}, 40] (* Vincenzo Librandi, Jul 13 2018 *)

PROG

Floretion Algebra Multiplication Program, FAMP Code: 1dia[I]tesseq[A*B] with A = - .25'i + .25'j + .25'k - .25i' + .25j' + .25k' - .25'ii' + .25'jj' + .25'kk' + .25'ij' + .25'ik' + .25'ji' + .25'jk' + .25'ki' + .25'kj' - .25e and B = + 'i + i' + 'ji' + 'ki' + e

(PARI) a(n)=([0, 1; 2, 3]^n*[1; 2])[1, 1] \\ Charles R Greathouse IV, Jun 20 2015

(MAGMA) m:=35; R<x>:=PowerSeriesRing(Integers(), m); Coefficients(R!(1 - x)/(1 - 3*x - 2*x^2)); // Vincenzo Librandi, Jul 13 2018

CROSSREFS

Cf. A007484, A007483, A007482 (partial sums), A104935, A055099, A046717, A052984, A006131.

Sequence in context: A291383 A277653 A066796 * A056711 A114590 A133592

Adjacent sequences:  A104931 A104932 A104933 * A104935 A104936 A104937

KEYWORD

nonn,easy

AUTHOR

Creighton Dement, Mar 29 2005

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified November 17 12:00 EST 2018. Contains 317276 sequences. (Running on oeis4.)