login
This site is supported by donations to The OEIS Foundation.

 

Logo

Invitation: celebrating 50 years of OEIS, 250000 sequences, and Sloane's 75th, there will be a conference at DIMACS, Rutgers, Oct 9-10 2014.

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A104934 G.f.: (1-x)/(1-3*x-2*x^2). 11
1, 2, 8, 28, 100, 356, 1268, 4516, 16084, 57284, 204020, 726628, 2587924, 9217028, 32826932, 116914852, 416398420, 1483024964, 5281871732, 18811665124, 66998738836, 238619546756, 849856117940, 3026807447332 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

COMMENTS

A floretion-generated sequence relating A007482, A007483, A007484. Inverse is A046717. Inverse of Fibonacci(3n+1), A033887. Binomial transform is A052984. Inverse binomial transform is A006131. Note: the conjectured relation 2*a(n) = A007482(n) + A007483(n-1) is a result of the FAMP identity dia[I] + dia[J] + dia[K] = jes + fam

a(n) is also the number of ways to build a (2 x 2 x n)-tower using (2 x 1 x 1)-bricks (see Exercise 3.15 in Aigner's book). [From Vania Mascioni (vmascioni(AT)bsu.edu), Mar 09 2009]

a(n) is the number of compositions of n when there are 2 types of 1 and 4 types of other natural numbers. [From Milan Janjic, Aug 13 2010]

Pisano period lengths: 1, 1, 4, 1, 24, 4, 48, 1, 12, 24, 30, 4, 12, 48, 24, 1,272, 12, 18, 24,... - R. J. Mathar, Aug 10 2012

REFERENCES

M. Aigner, A Course in Enumeration, Springer, 2007, p.103. [From Vania Mascioni (vmascioni(AT)bsu.edu), Mar 09 2009]

LINKS

Table of n, a(n) for n=0..23.

Index entries for sequences related to linear recurrences with constant coefficients, signature (3,2)

FORMULA

Define A007483(-1) = 1. Then 2*a(n) = A007482(n) + A007483(n-1) (conjecture) a(n+2) = 4*A007484(n); ( Thus 8*A007484(n) = A007482(n+2) + A007483(n+1) ) a(n+1) = 2*A055099(n); a(n+2) - a(n+1) - a(n) = A007484(n+1) - A007484(n)

a(0)=1, a(1)=2, a(n)=3*a(n-1)+2*a(n-2) for n>1 . - Philippe Deléham, Sep 19 2006

a(n) = Sum_{k, 0<=k<=n}2^k*A122542(n,k) . - Philippe Deléham, Oct 08 2006

a(n) = (1/2)*[(3/2)+(1/2)*sqrt(17)]^n-(1/34)*sqrt(17)*[(3/2)-(1/2)*sqrt(17)]^n+(1/34)*[(3/2)+(1/2) *sqrt(17)]^n*sqrt(17)+(1/2)*[(3/2)-(1/2)*sqrt(17)]^n, with n>=0 [From Paolo P. Lava, Nov 19 2008]

a(n) = ((17+sqrt(17))/34)*(0.5*sqrt(17)+1.5)^n+((17-sqrt(17))/34)*(-0.5*sqrt(17)+1.5)^n [From Richard Choulet, Nov 19 2008]

a(n) = 2*a(n-1)+4*sum(k=0..n-2, a(k) ) for n>0. [From Vania Mascioni (vmascioni(AT)bsu.edu), Mar 09 2009]

G.f.: 1/(1 - 2*x*(1+x)*Q(0)), where Q(k)= 1 + (4*k+1)*x*(1-x)/(k+1 - x*(1-x)*(2*k+2)*(4*k+3)/(2*x*(1-x)*(4*k+3)+(2*k+3)/Q(k+1))); (continued fraction). - Sergei N. Gladkovskii, May 14 2013

PROG

Floretion Algebra Multiplication Program, FAMP Code: 1dia[I]tesseq[A*B] with A = - .25'i + .25'j + .25'k - .25i' + .25j' + .25k' - .25'ii' + .25'jj' + .25'kk' + .25'ij' + .25'ik' + .25'ji' + .25'jk' + .25'ki' + .25'kj' - .25e and B = + 'i + i' + 'ji' + 'ki' + e

CROSSREFS

Cf. A007484, A007483, A007482, A104935, A055099, A046717, A052984, A006131.

Sequence in context: A060995 A106731 A066796 * A056711 A114590 A133592

Adjacent sequences:  A104931 A104932 A104933 * A104935 A104936 A104937

KEYWORD

nonn

AUTHOR

Creighton Dement, Mar 29 2005

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

Content is available under The OEIS End-User License Agreement .

Last modified October 1 16:17 EDT 2014. Contains 247515 sequences.