login
This site is supported by donations to The OEIS Foundation.

 

Logo

Annual Appeal: Please make a donation (tax deductible in USA) to keep the OEIS running. Over 5000 articles have referenced us, often saying "we discovered this result with the help of the OEIS".

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A057077 Periodic sequence 1,1,-1,-1; expansion of (1+x)/(1+x^2). 76
1, 1, -1, -1, 1, 1, -1, -1, 1, 1, -1, -1, 1, 1, -1, -1, 1, 1, -1, -1, 1, 1, -1, -1, 1, 1, -1, -1, 1, 1, -1, -1, 1, 1, -1, -1, 1, 1, -1, -1, 1, 1, -1, -1, 1, 1, -1, -1, 1, 1, -1, -1, 1, 1, -1, -1, 1, 1, -1, -1, 1, 1, -1, -1, 1, 1, -1, -1, 1, 1, -1, -1 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,1

COMMENTS

Sum_{k>=0} a(k)/(k+1) = Sum_{k>=0} 1/((a(k)*(k+1))) = log(2)/2 + Pi/4. - Jaume Oliver Lafont, Apr 30 2010

Abscissa of the image produced after n alternating reflections of (1,1) over the x and y axes respectively.  Similarly, the ordinate of the image produced after n alternating reflections of (1,1) over the y and x axes respectively. - Wesley Ivan Hurt, Jul 06 2013

LINKS

Table of n, a(n) for n=0..71.

Index entries for linear recurrences with constant coefficients, signature (0,-1).

Index entries for sequences related to Chebyshev polynomials.

FORMULA

G.f.: (1+x)/(1+x^2).

a(n) = S(n, 0)+S(n-1, 0) = S(2*n, sqrt(2)); S(n, x) := U(n, x/2), Chebyshev polynomials of 2nd kind, A049310. S(n, 0)=A056594.

a(n) = cos(n*Pi/2)+sin(n*Pi/2) with n>=0. - Paolo P. Lava, Jun 12 2006

a(n) = (-1)^binomial(n,2) = (-1)^floor(n/2) = 1/2*((n+2) mod 4 - n mod 4). For fixed r = 0,1,2,..., it appears that (-1)^binomial(n,2^r) gives a periodic sequence of period 2^(r+1), the period consisting of a block of 2^r plus ones followed by a block of 2^r minus ones. See A033999 (r = 0), A143621 (r = 2) and A143622 (r = 3). Define E(k) = sum {n = 0..inf} a(n)*n^k/n! for k = 0,1,2,... . Then E(0) = cos(1) + sin(1), E(1) = cos(1) - sin(1) and E(k) is an integral linear combination of E(0) and E(1) (a Dobinski-type relation). Precisely, E(k) = A121867(k) * E(0) - A121868(k) * E(1). See A143623 and A143624 for the decimal expansions of E(0) and E(1) respectively. For a fixed value of r, similar relations hold between the values of the sums E_r(k) := sum {n = 0..inf} (-1)^floor(n/r)*n^k/n!, k = 0,1,2,... . For particular cases see A000587 (r = 1) and A143628 (r = 3). - Peter Bala, Aug 28 2008

a(n) = (1/2)*((1-I)*I^n+(1+I)*(-I)^n), with I=sqrt(-1) - Paolo P. Lava, May 26 2010

a(n) = (-1)^A180969(1,n), where the first index in A180969(.,.) is the row index. - Adriano Caroli, Nov 18 2010

a(n) = (-1)^((2*n+(-1)^n-1)/4) = i^((n-1)*n), with i=sqrt(-1). - Bruno Berselli, Dec 27 2010 - Aug 26 2011

Non-simple continued fraction expansion of (3+sqrt(5))/2 = A104457. - R. J. Mathar, Mar 08 2012

E.g.f.: cos(x)*(1 + tan(x)). - Arkadiusz Wesolowski, Aug 31 2012

MAPLE

seq((-1)^floor(k/2), k=0..70); - Wesley Ivan Hurt, Jul 06 2013

MATHEMATICA

a[n_] := {1, 1, -1, -1}[[Mod[n, 4] + 1]] (* Jean-François Alcover, Jul 05 2013 *)

PadRight[{}, 80, {1, 1, -1, -1}] (* Harvey P. Dale, Jun 21 2015 *)

PROG

(Maxima) A057077(n) := block(

        [1, 1, -1, -1][1+mod(n, 4)]

)$ /* R. J. Mathar, Mar 19 2012 */

(MAGMA) &cat[[1, 1, -1, -1]^^20]; // Vincenzo Librandi, Feb 18 2016

(PARI) a(n)=(-1)^(n\2) \\ Charles R Greathouse IV, Nov 07 2016

CROSSREFS

|a(n)|=A000012. Cf. A049310.

Cf. A000587, A121867, A121868, A130151, A143621, A143622, A143623, A143624, A143628.

Sequence in context: A131554 A153881 A160357 * A070748 A154990 A209615

Adjacent sequences:  A057074 A057075 A057076 * A057078 A057079 A057080

KEYWORD

sign,easy

AUTHOR

Wolfdieter Lang, Aug 04 2000

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified December 7 14:52 EST 2016. Contains 278877 sequences.