This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A057077 Periodic sequence 1,1,-1,-1; expansion of (1+x)/(1+x^2). 78
 1, 1, -1, -1, 1, 1, -1, -1, 1, 1, -1, -1, 1, 1, -1, -1, 1, 1, -1, -1, 1, 1, -1, -1, 1, 1, -1, -1, 1, 1, -1, -1, 1, 1, -1, -1, 1, 1, -1, -1, 1, 1, -1, -1, 1, 1, -1, -1, 1, 1, -1, -1, 1, 1, -1, -1, 1, 1, -1, -1, 1, 1, -1, -1, 1, 1, -1, -1, 1, 1, -1, -1 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,1 COMMENTS Sum_{k>=0} a(k)/(k+1) = Sum_{k>=0} 1/((a(k)*(k+1))) = log(2)/2 + Pi/4. - Jaume Oliver Lafont, Apr 30 2010 Abscissa of the image produced after n alternating reflections of (1,1) over the x and y axes respectively.  Similarly, the ordinate of the image produced after n alternating reflections of (1,1) over the y and x axes respectively. - Wesley Ivan Hurt, Jul 06 2013 REFERENCES Fink, Alex, Richard Guy, and Mark Krusemeyer. "Partitions with parts occurring at most thrice." Contributions to Discrete Mathematics 3.2 (2008), 76-114. See Section 13. LINKS T.-X. He, L. W. Shapiro, Fuss-Catalan matrices, their weighted sums, and stabilizer subgroups of the Riordan group, Lin. Alg. Applic. 532 (2017) 25-41, Theorem 2.5, k=2. Index entries for linear recurrences with constant coefficients, signature (0,-1). FORMULA G.f.: (1+x)/(1+x^2). a(n) = S(n, 0)+S(n-1, 0) = S(2*n, sqrt(2)); S(n, x) := U(n, x/2), Chebyshev polynomials of 2nd kind, A049310. S(n, 0)=A056594. a(n) = cos(n*Pi/2)+sin(n*Pi/2) with n>=0. - Paolo P. Lava, Jun 12 2006 a(n) = (-1)^binomial(n,2) = (-1)^floor(n/2) = 1/2*((n+2) mod 4 - n mod 4). For fixed r = 0,1,2,..., it appears that (-1)^binomial(n,2^r) gives a periodic sequence of period 2^(r+1), the period consisting of a block of 2^r plus ones followed by a block of 2^r minus ones. See A033999 (r = 0), A143621 (r = 2) and A143622 (r = 3). Define E(k) = sum {n = 0..inf} a(n)*n^k/n! for k = 0,1,2,... . Then E(0) = cos(1) + sin(1), E(1) = cos(1) - sin(1) and E(k) is an integral linear combination of E(0) and E(1) (a Dobinski-type relation). Precisely, E(k) = A121867(k) * E(0) - A121868(k) * E(1). See A143623 and A143624 for the decimal expansions of E(0) and E(1) respectively. For a fixed value of r, similar relations hold between the values of the sums E_r(k) := sum {n = 0..inf} (-1)^floor(n/r)*n^k/n!, k = 0,1,2,... . For particular cases see A000587 (r = 1) and A143628 (r = 3). - Peter Bala, Aug 28 2008 a(n) = (1/2)*((1-I)*I^n+(1+I)*(-I)^n), with I=sqrt(-1) - Paolo P. Lava, May 26 2010 a(n) = (-1)^A180969(1,n), where the first index in A180969(.,.) is the row index. - Adriano Caroli, Nov 18 2010 a(n) = (-1)^((2*n+(-1)^n-1)/4) = i^((n-1)*n), with i=sqrt(-1). - Bruno Berselli, Dec 27 2010 - Aug 26 2011 Non-simple continued fraction expansion of (3+sqrt(5))/2 = A104457. - R. J. Mathar, Mar 08 2012 E.g.f.: cos(x)*(1 + tan(x)). - Arkadiusz Wesolowski, Aug 31 2012 MAPLE seq((-1)^floor(k/2), k=0..70); - Wesley Ivan Hurt, Jul 06 2013 MATHEMATICA a[n_] := {1, 1, -1, -1}[[Mod[n, 4] + 1]] (* Jean-François Alcover, Jul 05 2013 *) PadRight[{}, 80, {1, 1, -1, -1}] (* Harvey P. Dale, Jun 21 2015 *) PROG (Maxima) A057077(n) := block(         [1, 1, -1, -1][1+mod(n, 4)] )\$ /* R. J. Mathar, Mar 19 2012 */ (MAGMA) &cat[[1, 1, -1, -1]^^20]; // Vincenzo Librandi, Feb 18 2016 (PARI) a(n)=(-1)^(n\2) \\ Charles R Greathouse IV, Nov 07 2016 CROSSREFS |a(n)|=A000012. Cf. A049310. Cf. A000587, A121867, A121868, A130151, A143621, A143622, A143623, A143624, A143628. Sequence in context: A131554 A153881 A160357 * A070748 A154990 A209615 Adjacent sequences:  A057074 A057075 A057076 * A057078 A057079 A057080 KEYWORD sign,easy AUTHOR Wolfdieter Lang, Aug 04 2000 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified October 20 07:17 EDT 2018. Contains 316378 sequences. (Running on oeis4.)