This site is supported by donations to The OEIS Foundation.

 Please make a donation to keep the OEIS running. We are now in our 55th year. In the past year we added 12000 new sequences and reached 8000 citations (which often say "discovered thanks to the OEIS"). We need to raise money to hire someone to manage submissions, which would reduce the load on our editors and speed up editing. Other ways to donate

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A069091 Jordan function J_6(n). 9
 1, 63, 728, 4032, 15624, 45864, 117648, 258048, 530712, 984312, 1771560, 2935296, 4826808, 7411824, 11374272, 16515072, 24137568, 33434856, 47045880, 62995968, 85647744, 111608280, 148035888, 187858944, 244125000, 304088904, 386889048 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 COMMENTS From Enrique Pérez Herrero, Sep 14 2010: (Start) a(n) is the Moebius transform of n^6. Note that J_2(n), J_3(n), eulerphi(n) and psi(n) divides a(n), this sequences are: A007434(n), A059376(n), A000010(n) and A001615(n) respectively. (End) REFERENCES L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 199, #3. LINKS Enrique Pérez Herrero, Table of n, a(n) for n=1..2000 FORMULA a(n) = Sum_{d|n} d^6*mu(n/d). Multiplicative with a(p^e) = p^(6e)-p^(6(e-1)). Dirichlet generating function: zeta(s-6)/zeta(s). - Ralf Stephan, Jul 04 2013 a(n) = n^6*Product_{distinct primes p dividing n} (1-1/p^6). - Tom Edgar, Jan 09 2015 Sum_{k=1..n} a(k) ~ n^7 / (7*Zeta(7)). - Vaclav Kotesovec, Feb 07 2019 MATHEMATICA JordanTotient[n_, k_:1]:=DivisorSum[n, #^k*MoebiusMu[n/# ]&]/; (n>0)&&IntegerQ[n] A069091[n_IntegerQ]:=JordanTotient[n, 6]; (* Enrique Pérez Herrero, Sep 14 2010 *) PROG (PARI) for(n=1, 100, print1(sumdiv(n, d, d^6*moebius(n/d)), ", ")) CROSSREFS Cf. A059379 and A059380 (triangle of values of J_k(n)), A000010 (J_1), A059376 (J_3), A059377 (J_4), A059378 (J_5). Cf. A065959. [Enrique Pérez Herrero, Sep 14 2010] Sequence in context: A221968 A115152 A284953 * A123866 A024004 A284927 Adjacent sequences:  A069088 A069089 A069090 * A069092 A069093 A069094 KEYWORD easy,nonn,mult AUTHOR Benoit Cloitre, Apr 05 2002 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 8 02:07 EST 2019. Contains 329850 sequences. (Running on oeis4.)