login
A069088
a(n) = Sum_{d|n} core(d) where d are the divisors of n and where core(d) is the squarefree part of d: the smallest number such that d*core(d) is a square.
3
1, 3, 4, 4, 6, 12, 8, 6, 5, 18, 12, 16, 14, 24, 24, 7, 18, 15, 20, 24, 32, 36, 24, 24, 7, 42, 8, 32, 30, 72, 32, 9, 48, 54, 48, 20, 38, 60, 56, 36, 42, 96, 44, 48, 30, 72, 48, 28, 9, 21, 72, 56, 54, 24, 72, 48, 80, 90, 60, 96, 62, 96, 40, 10, 84, 144, 68, 72, 96, 144, 72, 30, 74
OFFSET
1,2
COMMENTS
Multiplicative because it is the inverse Moebius transform of A007913 which is multiplicative. - Christian G. Bower, May 17 2005.
LINKS
FORMULA
G.f.: Sum_{k>=1} core(k)*x^k/(1-x^k). - Benoit Cloitre, Apr 21 2003
Dirichlet g.f.: zeta(2*s)*zeta(s)*zeta(s-1)/zeta(2*s-2). - R. J. Mathar, Oct 31 2011
Sum_{k=1..n} a(k) ~ Pi^4 * n^2 / 180. - Vaclav Kotesovec, Feb 01 2019
Multiplicative with a(p^e) = (p+1)*(e+1)/2 if e odd, and (p+1)*e/2 + 1 if e even. - Amiram Eldar, Sep 03 2020
MATHEMATICA
f[p_, e_] := If[OddQ[e], (p + 1)*(e + 1)/2, (p + 1)*e/2 + 1]; a[1] = 1; a[n_] := Times @@ (f @@@ FactorInteger[n]); Array[a, 100] (* Amiram Eldar, Sep 03 2020 *)
PROG
(PARI) a(n) = sumdiv(n, d, core(d) );
CROSSREFS
Cf. A007913.
Sequence in context: A344465 A008473 A326043 * A178450 A325973 A363289
KEYWORD
easy,nonn,mult
AUTHOR
Benoit Cloitre, Apr 05 2002
STATUS
approved