login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A059379 Array of values of Jordan function J_k(n) read by antidiagonals (version 1). 18
1, 1, 1, 2, 3, 1, 2, 8, 7, 1, 4, 12, 26, 15, 1, 2, 24, 56, 80, 31, 1, 6, 24, 124, 240, 242, 63, 1, 4, 48, 182, 624, 992, 728, 127, 1, 6, 48, 342, 1200, 3124, 4032, 2186, 255, 1, 4, 72, 448, 2400, 7502, 15624, 16256, 6560, 511, 1, 10, 72, 702, 3840 (list; table; graph; refs; listen; history; text; internal format)
OFFSET

1,4

REFERENCES

L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 199, #3.

R. Sivaramakrishnan, "The many facets of Euler's totient. II. Generalizations and analogues", Nieuw Arch. Wisk. (4) 8 (1990), no. 2, 169-187.

LINKS

Enrique Pérez Herrero, Table of n, a(n) for n = 1..10000

FORMULA

J_k(n) = sum( d divides n, d^k*mu(n/d)) - Benoit Cloitre and Michael Orrison (orrison(AT)math.hmc.edu), Jun 07 2002

EXAMPLE

Array begins:

1, 1, 2, 2, 4, 2, 6, 4, 6, 4, 10, 4, ...

1, 3, 8, 12, 24, 24, 48, 48, 72, 72, ...

1, 7, 26, 56, 124, 182, 342, 448, 702, ...

1, 15, 80, 240, 624, 1200, 2400, 3840, ...

MAPLE

J := proc(n, k) local i, p, t1, t2; t1 := n^k; for p from 1 to n do if isprime(p) and n mod p = 0 then t1 := t1*(1-p^(-k)); fi; od; t1; end;

MATHEMATICA

JordanTotient[n_, k_:1]:=DivisorSum[n, #^k*MoebiusMu[n/#]&]/; (n>0)&&IntegerQ[n];

A004736[n_]:=Binomial[Floor[3/2+Sqrt[2*n]], 2]-n+1;

A002260[n_]:=n-Binomial[Floor[1/2+Sqrt[2*n]], 2];

A059379[n_]:=JordanTotient[A004736[n], A002260[n]]; (* Enrique Pérez Herrero, Dec 19 2010 *)

PROG

(PARI)

jordantot(n, k)=sumdiv(n, d, d^k*moebius(n/d));

A002260(n)=n-binomial(floor(1/2+sqrt(2*n)), 2);

A004736(n)=binomial(floor(3/2+sqrt(2*n)), 2)-n+1;

A059379(n)=jordantot(A004736(n), A002260(n)); \\ Enrique Pérez Herrero, Jan 08 2011

CROSSREFS

See A059379 and A059380 (triangle of values of J_k(n)), A000010 (J_1), A059376 (J_3), A059377 (J_4), A059378 (J_5). Columns give A000225, A024023, A020522, A024049, A059387, etc.

Main diagonal gives A067858.

Sequence in context: A183759 A101477 A077887 * A065487 A025258 A118846

Adjacent sequences:  A059376 A059377 A059378 * A059380 A059381 A059382

KEYWORD

nonn,tabl

AUTHOR

N. J. A. Sloane, Jan 28 2001

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified February 23 07:06 EST 2018. Contains 299473 sequences. (Running on oeis4.)