login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A069093
Jordan function J_8(n).
7
1, 255, 6560, 65280, 390624, 1672800, 5764800, 16711680, 43040160, 99609120, 214358880, 428236800, 815730720, 1470024000, 2562493440, 4278190080, 6975757440, 10975240800, 16983563040, 25499934720, 37817088000
OFFSET
1,2
COMMENTS
a(n) is divisible by 480 = (2^5)*3*5 = A006863(4), except for n = 1, 2, 3 and 5. See Lugo. - Peter Bala, Jan 13 2024
REFERENCES
L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 199, #3.
FORMULA
a(n) = Sum_{d|n} d^8*mu(n/d).
Multiplicative with a(p^e) = p^(8e)-p^(8(e-1)).
Dirichlet generating function: zeta(s-8)/zeta(s). - Ralf Stephan, Jul 04 2013
a(n) = n^8*Product_{distinct primes p dividing n} (1-1/p^8). - Tom Edgar, Jan 09 2015
Sum_{k=1..n} a(k) ~ n^9 / (9*zeta(9)). - Vaclav Kotesovec, Feb 07 2019
From Amiram Eldar, Oct 12 2020: (Start)
Limit_{n->oo} (1/n) * Sum_{k=1..n} a(k)/k^8 = 1/zeta(9).
Sum_{n>=1} 1/a(n) = Product_{p prime} (1 + p^8/(p^8-1)^2) = 1.0040927606... (End)
MAPLE
with(numtheory): seq(add(d^8 * mobius(n/d), d in divisors(n)), n = 1..100); # Peter Bala, Jan 13 2024
MATHEMATICA
JordanJ[n_, k_] := DivisorSum[n, #^k*MoebiusMu[n/#] &]; f[n_] := JordanJ[n, 8]; Array[f, 25]
f[p_, e_] := p^(8*e) - p^(8*(e-1)); a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Oct 12 2020 *)
PROG
(PARI) for(n=1, 100, print1(sumdiv(n, d, d^8*moebius(n/d)), ", "))
CROSSREFS
Cf. A059379 and A059380 (triangle of values of J_k(n)), A000010 (J_1), A007434 (J_2), A059376 (J_3), A059377 (J_4), A059378 (J_5), A069091 - A069095 (J_6 through J_10)
Cf. A013667.
Sequence in context: A228223 A022524 A261032 * A024006 A258809 A321553
KEYWORD
easy,nonn,mult
AUTHOR
Benoit Cloitre, Apr 05 2002
STATUS
approved