login
This site is supported by donations to The OEIS Foundation.

 

Logo

Annual Appeal: Please make a donation (tax deductible in USA) to keep the OEIS running. Over 5000 articles have referenced us, often saying "we discovered this result with the help of the OEIS".

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A059377 Jordan function J_4(n). 19
1, 15, 80, 240, 624, 1200, 2400, 3840, 6480, 9360, 14640, 19200, 28560, 36000, 49920, 61440, 83520, 97200, 130320, 149760, 192000, 219600, 279840, 307200, 390000, 428400, 524880, 576000, 707280, 748800, 923520, 983040, 1171200 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,2

COMMENTS

This sequence is multiplicative. - Mitch Harris, Apr 19 2005

REFERENCES

L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 199, #3.

R. Sivaramakrishnan, "The many facets of Euler's totient. II. Generalizations and analogues", Nieuw Arch. Wisk. (4) 8 (1990), no. 2, 169-187.

LINKS

T. D. Noe, Table of n, a(n) for n=1..1000

FORMULA

a(n) = sum(d|n, d^4*mu(n/d)). - Benoit Cloitre, Apr 05 2002

Multiplicative with a(p^e) = p^(4e)-p^(4(e-1)).

Dirichlet generating function: zeta(s-4)/zeta(s). - Franklin T. Adams-Watters, Sep 11 2005

a(n) = Sum_{k=1..n} GCD(k,n)^4 * Cos(2*Pi*k/n). - Enrique Pérez Herrero, Jan 18 2013

a(n) = n^4*Product_{distinct primes p dividing n} (1-1/p^4). - Tom Edgar, Jan 09 2015

MAPLE

J := proc(n, k) local i, p, t1, t2; t1 := n^k; for p from 1 to n do if isprime(p) and n mod p = 0 then t1 := t1*(1-p^(-k)); fi; od; t1; end; # (with k = 4)

MATHEMATICA

JordanJ[n_, k_: 1] := DivisorSum[n, #^k*MoebiusMu[n/#] &]; f[n_] := JordanJ[n, 4]; Array[f, 38]

PROG

(PARI) for(n=1, 100, print1(sumdiv(n, d, d^4*moebius(n/d)), ", "))

(PARI) a(n)=if(n<1, 0, sumdiv(n, d, d^4*moebius(n/d)))

(PARI) a(n)=if(n<1, 0, dirdiv(vector(n, k, k^4), vector(n, k, 1))[n])

(PARI) { for (n = 1, 1000, write("b059377.txt", n, " ", sumdiv(n, d, d^4*moebius(n/d))); ) } \\ Harry J. Smith, Jun 26 2009

CROSSREFS

See A059379 and A059380 (triangle of values of J_k(n)), A000010 (J_1), A007434 (J_2), A059376 (J_3), A059378 (J_5).

Sequence in context: A085808 A180577 A033594 * A123865 A024002 A050149

Adjacent sequences:  A059374 A059375 A059376 * A059378 A059379 A059380

KEYWORD

nonn,mult

AUTHOR

N. J. A. Sloane, Jan 28 2001

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified December 2 17:24 EST 2016. Contains 278682 sequences.