login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A033594 a(n) = (n-1)*(2*n-1)*(3*n-1). 4
-1, 0, 15, 80, 231, 504, 935, 1560, 2415, 3536, 4959, 6720, 8855, 11400, 14391, 17864, 21855, 26400, 31535, 37296, 43719, 50840, 58695, 67320, 76751, 87024, 98175, 110240, 123255, 137256, 152279, 168360 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,3

COMMENTS

The sequence of n such that n is prime and (2*n+1) is prime is the sequence of Sophie Germain primes A005384 and the subsequence of those for which in addition (3*n+2) is prime is A067256. - Jonathan Vos Post, Dec 15 2004

a(n)*A016921(n) + 1 = A051866(n)^2. - Bruno Berselli, May 23 2011

LINKS

Vincenzo Librandi, Table of n, a(n) for n = 0..1000

Index entries for linear recurrences with constant coefficients, signature (4,-6,4,-1).

FORMULA

a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4), with a(0)=-1, a(1)=0, a(2)=15, a(3)=80. - Harvey P. Dale, Aug 23 2012

G.f.: (-1 +4*x +9*x^2 +24*x^3)/(1-x)^4. - R. J. Mathar, Feb 06 2017

E.g.f.: (-1 + x + 7*x^2 + 6*x^3)*exp(x). - G. C. Greubel, Mar 05 2020

MAPLE

A033594:=n->(n-1)*(2*n-1)*(3*n-1); seq(A033594(n), n=0..40); # Wesley Ivan Hurt, Feb 24 2014

MATHEMATICA

Table[(n-1)*(2*n-1)*(3*n-1), {n, 0, 40}] (* Vladimir Joseph Stephan Orlovsky, Apr 28 2010 *)

LinearRecurrence[{4, -6, 4, -1}, {-1, 0, 15, 80}, 40] (* Harvey P. Dale, Aug 23 2012 *)

PROG

(MAGMA) [(n-1)*(2*n-1)*(3*n-1): n in [0..40]]; // Vincenzo Librandi, May 24 2011

(PARI) vector(41, n, my(m=n-1); (m-1)*(2*m-1)*(3*m-1) ) \\ G. C. Greubel, Mar 05 2020

(Sage) [-1]+[n^3*rising_factorial((n-1)/n, 3) for n in (1..40)] # G. C. Greubel, Mar 05 2020

(GAP) List([0..40], n-> (n-1)*(2*n-1)*(3*n-1) ); # G. C. Greubel, Mar 05 2020

CROSSREFS

Cf. A005384, A067256.

Sequence in context: A189922 A085808 A180577 * A059377 A123865 A024002

Adjacent sequences:  A033591 A033592 A033593 * A033595 A033596 A033597

KEYWORD

sign,easy

AUTHOR

N. J. A. Sloane

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified August 4 15:50 EDT 2020. Contains 336202 sequences. (Running on oeis4.)