login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A065959
a(n) = n^3*Product_{distinct primes p dividing n} (1+1/p^3).
16
1, 9, 28, 72, 126, 252, 344, 576, 756, 1134, 1332, 2016, 2198, 3096, 3528, 4608, 4914, 6804, 6860, 9072, 9632, 11988, 12168, 16128, 15750, 19782, 20412, 24768, 24390, 31752, 29792, 36864, 37296, 44226, 43344, 54432, 50654, 61740, 61544
OFFSET
1,2
LINKS
Enrique Pérez Herrero, Table of n, a(n) for n=1..10000
F. A. Lewis and others, Problem 4002, Amer. Math. Monthly, Vol. 49, No. 9, Nov. 1942, pp. 618-619.
FORMULA
Multiplicative with a(p^e) = p^(3*e)+p^(3*e-3). - Vladeta Jovovic, Dec 09 2001
a(n) = n^3*Sum_{d|n} mu(d)^2/d^3. - Benoit Cloitre, Apr 07 2002
a(n) = Sum_{d|n} mu(n/d)^2*d^3. - Joerg Arndt, Jul 06 2011
a(n) = J_6(n)/J_3(n) = A069091(n)/A059376(n). - Enrique Pérez Herrero, Aug 22 2010
Dirichlet g.f.: zeta(s)*zeta(s-3)/zeta(2*s). Dirichlet convolution of A008966 and A000578. - R. J. Mathar, Apr 10 2011
G.f.: Sum_{k>=1} mu(k)^2*x^k*(1 + 4*x^k + x^(2*k))/(1 - x^k)^4. - Ilya Gutkovskiy, Oct 24 2018
From Vaclav Kotesovec, Sep 19 2020: (Start)
Sum_{k=1..n} a(k) ~ 105*n^4 / (4*Pi^4).
Sum_{k>=1} 1/a(k) = Product_{primes p} (1 + p^3/(p^6-1)) = 1.18370753651668075930203278269930233284040397061087910806697928843547863257... (End)
MATHEMATICA
JordanTotient[n_, k_:1] := DivisorSum[n, #^k * MoebiusMu[n/#] &]/; (n>0) && IntegerQ[n]; A065959[n_] := JordanTotient[n, 6] / JordanTotient[n, 3]; Array[A065959, 39] (* Enrique Pérez Herrero, Aug 22 2010 *)
f[p_, e_] := p^(3*e) + p^(3*(e-1)); a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Oct 12 2020 *)
PROG
(PARI) for(n=1, 100, print1(n^3*sumdiv(n, d, moebius(d)^2/d^3), ", "))
(PARI) a(n)=sumdiv(n, d, moebius(n/d)^2*d^3); \\ Joerg Arndt, Jul 06 2011
CROSSREFS
Sequences of the form n^k * Product_ {p|n, p prime} (1 + 1/p^k) for k=0..10: A034444 (k=0), A001615 (k=1), A065958 (k=2), this sequence (k=3), A065960 (k=4), A351300 (k=5), A351301 (k=6), A351302 (k=7), A351303 (k=8), A351304 (k=9), A351305 (k=10).
Sequence in context: A034677 A009255 A062451 * A226333 A017669 A277065
KEYWORD
nonn,mult,easy
AUTHOR
N. J. A. Sloane, Dec 08 2001
STATUS
approved