login
This site is supported by donations to The OEIS Foundation.

 

Logo

Annual Appeal: Today, Nov 11 2014, is the 4th anniversary of the launch of the new OEIS web site. 70,000 sequences have been added in these four years, all edited by volunteers. Please make a donation (tax deductible in the US) to help keep the OEIS running.

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A065960 n^4*Product_{distinct primes p dividing n} (1+1/p^4). 9
1, 17, 82, 272, 626, 1394, 2402, 4352, 6642, 10642, 14642, 22304, 28562, 40834, 51332, 69632, 83522, 112914, 130322, 170272, 196964, 248914, 279842, 356864, 391250, 485554, 538002, 653344, 707282, 872644, 923522, 1114112, 1200644 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,2

REFERENCES

F. A. Lewis and others, Problem 4002, Amer. Math. Monthly, Vol. 49, No. 9, Nov. 1942, pp. 618-619.

LINKS

E. Pérez Herrero, Table of n, a(n) for n=1..10000

Wikipedia, Dedekind Psi function

FORMULA

Multiplicative with a(p^e) = p^(4*e)+p^(4*e-4). - Vladeta Jovovic, Dec 09 2001

a(n) = n^4*sum(d|n, mu(d)^2/d^4) - Benoit Cloitre, Apr 07 2002

a(n)=J_8(n)/J_4(n)=A069093(n)/A059377(n), where J_k is the k-th Jordan Totient Function [From Enrique Pérez Herrero, Aug 29 2010]

Dirichlet g.f. zeta(s)*zeta(s-4)/zeta(2*s). - R. J. Mathar, Jun 06 2011

MAPLE

A065960 := proc(n) n^4*mul(1+1/p^4, p=numtheory[factorset](n)) ; end proc:

seq(A065960(n), n=1..20) ; # R. J. Mathar, Jun 06 2011

PROG

(PARI) for(n=1, 100, print1(n^4*sumdiv(n, d, moebius(d)^2/d^4), ", "))

CROSSREFS

Cf. A000010, A001615, A007434, A065959, A065958.

Sequence in context: A184982 A088687 A034678 * A017671 A001159 A053820

Adjacent sequences:  A065957 A065958 A065959 * A065961 A065962 A065963

KEYWORD

nonn,mult

AUTHOR

N. J. A. Sloane, Dec 08 2001

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

Content is available under The OEIS End-User License Agreement .

Last modified November 27 14:29 EST 2014. Contains 250210 sequences.