login
A065956
a(n) = ceiling((-1)^n*n!*(E(n,2)-E(n,1)*E(n-1,1))) where E(n,x) = Sum_{k=0..n} (-1)^k*x^k/k!.
4
1, 1, 2, 3, 5, 9, 15, 27, 48, 87, 160, 296, 552, 1033, 1941, 3663, 6936, 13171, 25076, 47854, 91515, 175352, 336587, 647132, 1246070, 2402691, 4638909, 8967212, 17353538, 33618333, 65191863, 126535914, 245818071, 477938270, 929968029, 1810857391, 3528610690, 6880357956
OFFSET
0,3
EXAMPLE
1, 1, 2, 3, 5, 17/2, 89/6, 211/8, 1903/40, 62473/720, ...
MATHEMATICA
e[n_, x_]:=Sum[(-x)^k/k!, {k, 0, n}]; a[n_]:=Ceiling[(-1)^n*n!*(e[n, 2]-e[n, 1]e[n-1, 1])]; Array[a, 38, 0] (* Stefano Spezia, Apr 12 2024 *)
CROSSREFS
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, Dec 08 2001
EXTENSIONS
a(0)=1 prepended by and a(37) from Stefano Spezia, Apr 12 2024
STATUS
approved