login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 59th year, we have over 358,000 sequences, and we’ve crossed 10,300 citations (which often say “discovered thanks to the OEIS”).

Other ways to Give
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A057078 Periodic sequence 1,0,-1,...; expansion of (1+x)/(1+x+x^2). 46
1, 0, -1, 1, 0, -1, 1, 0, -1, 1, 0, -1, 1, 0, -1, 1, 0, -1, 1, 0, -1, 1, 0, -1, 1, 0, -1, 1, 0, -1, 1, 0, -1, 1, 0, -1, 1, 0, -1, 1, 0, -1, 1, 0, -1, 1, 0, -1, 1, 0, -1, 1, 0, -1, 1, 0, -1, 1, 0, -1, 1, 0, -1, 1, 0, -1, 1, 0, -1, 1, 0, -1, 1, 0, -1, 1, 0, -1, 1, 0, -1, 1, 0, -1, 1, 0, -1, 1, 0, -1 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,1

COMMENTS

Partial sums of signed sequence is shifted unsigned one: |a(n+2)|= A011655(n+1).

With interpolated zeros, a(n) = sin(5*Pi*n/6 + Pi/3)/sqrt(3) + cos(Pi*n/6 + Pi/6)/sqrt(3); this gives the diagonal sums of the Riordan array (1-x^2, x(1-x^2)). - Paul Barry, Feb 02 2005

From Tom Copeland, Nov 02 2014: (Start)

With a shift and a sign change the o.g.f of this array becomes the compositional inverse of the shifted Motzkin or Riordan numbers A005043,

(x - x^2) / (1 - x + x^2) = x*(1-x) / (1 - x*(1-x)) = x*(1-x) + [x*(1-x)]^2 + ... . Expanding each term of this series and arranging like powers of x in columns gives skewed rows of the Pascal triangle and reading along the columns gives (mod-signs and indexing) A011973, A169803, and A115139 (see also A091867, A092865, A098925, and A102426 for these term-by-term expansions and A030528). (End)

LINKS

Table of n, a(n) for n=0..89.

Ralph E. Griswold, Shaft Sequences

Index entries for sequences related to Chebyshev polynomials.

Index entries for linear recurrences with constant coefficients, signature (-1,-1).

FORMULA

a(n) = S(n, -1) + S(n - 1, -1) = S(2*n, 1); S(n, x) := U(n, x/2), Chebyshev polynomials of 2nd kind, A049310. S(n, -1) = A049347(n). S(n, 1)= A010892(n).

From Mario Catalani (mario.catalani(AT)unito.it), Jan 08 2003: (Start)

a(n) = (1/2)*((-1)^floor(2*n/3) + (-1)^floor((2*n+1)/3)).

a(n) = -a(n-1) - a(n-2).

a(n) = A061347(n) - A049347(n+2). (End)

a(n) = Sum_{k=0..n} binomial(n+k, 2k)*(-1)^(n-k) = Sum_{k=0..floor((n+1)/2)} binomial(n+1-k, k)*(-1)^(n-k). - Mario Catalani (mario.catalani(AT)unito.it), Aug 20 2003

Binomial transform is A010892. a(n) = 2*sqrt(3)*sin(2*Pi*n/3 + Pi/3)/3. - Paul Barry, Sep 13 2003

a(n) = cos(2*Pi*n/3) + sin(2*Pi*n/3)/sqrt(3). - Paul Barry, Oct 27 2004

a(n) = Sum_{k=0..n} (-1)^A010060(2n-2k)*(binomial(2n-k, k) mod 2). - Paul Barry, Dec 11 2004

a(n) = -(1/3)*(2*(n mod 3) - (n+1) mod 3 - (n+2) mod 3). - Paolo P. Lava, Oct 09 2006

a(n) = (4/3)*(|sin(Pi*(n-2)/3)| - |sin(Pi*n/3)|)*|sin(Pi*(n-1)/3)|. - Hieronymus Fischer, Jun 27 2007

a(n) = 1 - (n mod 3) = 1 + 3*floor(n/3)) - n. - Hieronymus Fischer, Jun 27 2007

a(n) = 1 - A010872(n) = 1 + 3*A002264(n) - n. - Hieronymus Fischer, Jun 27 2007

Euler transform of length 3 sequence [0, -1, 1]. - Michael Somos, Oct 15 2008

a(n) = a(n-1)^2 - a(n-2)^2 with a(0) = 1, a(1) = 0. - Francesco Daddi, Aug 02 2011

a(n) = A049347(n) + A049347(n-1). - R. J. Mathar, Jun 26 2013

EXAMPLE

1 - x^2 + x^3 - x^5 + x^6 - x^8 + x^9 - x^11 + x^12 - x^14 + x^15 + ...

MAPLE

A057078:=n->1-(n mod 3); seq(A057078(n), n=0..100); # Wesley Ivan Hurt, Dec 06 2013

MATHEMATICA

a[n_] := {1, 0, -1}[[Mod[n, 3] + 1]] (* Jean-François Alcover, Jul 05 2013 *)

CoefficientList[Series[(1 + x) / (1 + x + x^2), {x, 0, 40}], x] (* Vincenzo Librandi, Nov 03 2014 *)

LinearRecurrence[{-1, -1}, {1, 0}, 90] (* Ray Chandler, Sep 15 2015 *)

PROG

(PARI) {a(n) = [1, 0, -1][n%3 + 1]} /* Michael Somos, Oct 15 2008 */

(Haskell)

a057078 = (1 -) . (`mod` 3) -- Reinhard Zumkeller, Mar 22 2013

(Sage)

def A057078():

x, y = -1, 0

while True:

yield -x

x, y = y, -x -y

a = A057078(); [next(a) for i in range(40)] # Peter Luschny, Jul 11 2013

CROSSREFS

Cf. A049310, A010892, A011655.

A049347(n) = a(-n).

Cf. A005043, A011973, A169803, A115139, A091867, A092865, A098925, A102426, A030528.

Sequence in context: A305385 A260190 A260192 * A204418 A127245 A175192

Adjacent sequences: A057075 A057076 A057077 * A057079 A057080 A057081

KEYWORD

easy,sign

AUTHOR

Wolfdieter Lang, Aug 04 2000

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 7 21:25 EST 2022. Contains 358669 sequences. (Running on oeis4.)