login
This site is supported by donations to The OEIS Foundation.

 

Logo

Annual appeal: Please make a donation to keep the OEIS running! Over 6000 articles have referenced us, often saying "we discovered this result with the help of the OEIS".
Other ways to donate

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A061347 Period 3: repeat [1, 1, -2]. 42
1, 1, -2, 1, 1, -2, 1, 1, -2, 1, 1, -2, 1, 1, -2, 1, 1, -2, 1, 1, -2, 1, 1, -2, 1, 1, -2, 1, 1, -2, 1, 1, -2, 1, 1, -2, 1, 1, -2, 1, 1, -2, 1, 1, -2, 1, 1, -2, 1, 1, -2, 1, 1, -2, 1, 1, -2, 1, 1, -2, 1, 1, -2, 1, 1, -2, 1, 1, -2, 1, 1, -2, 1, 1, -2, 1, 1, -2, 1, 1, -2, 1, 1, -2, 1, 1, -2, 1, 1, -2, 1, 1, -2, 1, 1, -2, 1, 1, -2, 1, 1, -2, 1, 1, -2, 1, 1, -2 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,3

COMMENTS

WARNING: It is unclear whether this sequence should start at offset 1 (as written) or offset 0 (in analogy to many similar sequences, which seems to be assumed in many of the given formulas).

Inverse binomial transform of A057079. - Paul Barry, May 15 2003

The unsigned version, with g.f. (1+x+2x^2)/(1-x^3), has a(n) = 4/3-cos(2*Pi*n/3)/3-sqrt(3)*sin(2*Pi*n/3)/3 = gcd(fib(n+4), fib(n+1)). - Paul Barry, Apr 02 2004

a(n) = L(n-2,-1), where L is defined as in A108299; see also A010892 for L(n,+1). - Reinhard Zumkeller, Jun 01 2005

From the Taylor expansion of log(1+x+x^2) at x=1, Sum_{k>0} a(k)/k = log(3) = A002391. This is case n=3 of the general expression Sum_{k>0} (1-n*!(k%n))/k = log(n). - Jaume Oliver Lafont, Oct 16 2009

If used with offset zero, a non-simple continued fraction representation of 2+sqrt(2). - R. J. Mathar, Mar 08 2012

Periodic sequences of this type can be also calculated by a(n) = c + floor(q/(p^m-1)*p^n) mod p, where c is a constant, q is the number representing the periodic digit pattern and m is the period length. c, p and q can be calculated as follows: Let D be the array representing the number pattern to be repeated, m = size of D, max = maximum value of elements in D, min = minimum value of elements in D. Than c := min, p := max - min + 1 and q := p^m*Sum_{i=1..m} (D(i)-min)/p^i. Example: D = (1, 1, -2), c = -2, p = 4 and q = 60 for this sequence. - Hieronymus Fischer, Jan 04 2013

LINKS

Table of n, a(n) for n=1..108.

Ralph E. Griswold, Shaft Sequences

Tanya Khovanova, Recursive Sequences

Index entries for linear recurrences with constant coefficients, signature (-1,-1).

FORMULA

a(n) = A057079(2n). a(n) = - a(n-1) - a(n-2) with a(0) = a(1) = 1.

G.f.: (1+2*x)/(1+x+x^2). a(n) = (-1)^floor(2n/3)+((-1)^floor((2n-1)/3)+ (-1)^floor((2n+1)/3))/2. - Mario Catalani (mario.catalani(AT)unito.it), Jan 07 2003

a(n) = -(n mod 3)+(n+1) mod 3. - Paolo P. Lava, Oct 20 2006

a(n) = -2*cos(2*Pi*n/3). - Jaume Oliver Lafont, May 06 2008

Dirichlet g.f. zeta(s)*(1-1/3^(s-1)). - R. J. Mathar, Feb 09 2011

a(n) = n * Sum_{k=1..n} binomial(k,n-k)/k*(-1)^(k+1). - Dmitry Kruchinin, Jun 03 2011

a(n) = -2+floor(110/333*10^(n+1)) mod 10. - Hieronymus Fischer, Jan 04 2013

a(n) = -2+floor(20/21*4^(n+1)) mod 4. - Hieronymus Fischer, Jan 04 2013

a(n) = a(n-3) for n>3. - Wesley Ivan Hurt, Jul 01 2016

E.g.f.: 2 - 2*cos(sqrt(3)*x/2)*exp(-x/2). - Ilya Gutkovskiy, Jul 01 2016

a(n) = (-1)^n*hypergeom([-n/2-1, -n/2-3/2], [-n-2], 4). - Peter Luschny, Dec 17 2016

MAPLE

seq(op([1, 1, -2]), n=1..50); # Wesley Ivan Hurt, Jul 01 2016

MATHEMATICA

a[n_] := {1, 1, -2}[[Mod[n - 1, 3] + 1]]; Table[a[n], {n, 108}] (* Jean-Fran├žois Alcover, Jul 19 2013 *)

PROG

(PARI) a(n)=1-3*!(n%3) \\ Jaume Oliver Lafont, Oct 16 2009

(Sage)

def A061347():

    x, y = -1, -1

    while true:

        yield -x

        x, y = y, -x -y

a = A061347(); [a.next() for i in range(40)] # Peter Luschny, Jul 11 2013

(MAGMA) &cat [[1, 1, -2]^^30]; // Wesley Ivan Hurt, Jul 01 2016

CROSSREFS

Apart from signs, same as A057079, A100063. Cf. A000045, A010892 for the rules a(n) = a(n - 1) + a(n - 2), a(n) = a(n - 1) - a(n - 2). a(n) = - a(n - 1) + a(n - 2) gives a signed version of Fibonacci numbers.

Cf. A002391, A108299.

Alternating row sums of A130777: repeat(1,-2,1).

Sequence in context: A101825 A177702 A131534 * A115579 A115573 A152851

Adjacent sequences:  A061344 A061345 A061346 * A061348 A061349 A061350

KEYWORD

sign,easy,mult

AUTHOR

Jason Earls (zevi_35711(AT)yahoo.com), Jun 07 2001

EXTENSIONS

Better definition from M. F. Hasler, Jan 13 2013

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified November 21 06:31 EST 2017. Contains 294989 sequences.