The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation. Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A061347 Period 3: repeat [1, 1, -2]. 49
 1, 1, -2, 1, 1, -2, 1, 1, -2, 1, 1, -2, 1, 1, -2, 1, 1, -2, 1, 1, -2, 1, 1, -2, 1, 1, -2, 1, 1, -2, 1, 1, -2, 1, 1, -2, 1, 1, -2, 1, 1, -2, 1, 1, -2, 1, 1, -2, 1, 1, -2, 1, 1, -2, 1, 1, -2, 1, 1, -2, 1, 1, -2, 1, 1, -2, 1, 1, -2, 1, 1, -2, 1, 1, -2, 1, 1, -2, 1, 1, -2, 1, 1, -2, 1, 1, -2, 1, 1, -2, 1, 1, -2, 1, 1, -2, 1, 1, -2, 1, 1, -2, 1, 1, -2, 1, 1, -2 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,3 COMMENTS WARNING: It is unclear whether this sequence should start at offset 1 (as written) or offset 0 (in analogy to many similar sequences, which seems to be assumed in many of the given formulas). Inverse binomial transform of A057079. - Paul Barry, May 15 2003 The unsigned version, with g.f. (1 + x + 2*x^2)/(1 - x^3), has a(n) = 4/3 -cos(2*Pi*n/3)/3 - sqrt(3)*sin(2*Pi*n/3)/3 = gcd(Fib(n+4), Fib(n+1)). - Paul Barry, Apr 02 2004 a(n) = L(n-2,-1), where L is defined as in A108299; see also A010892 for L(n,+1). - Reinhard Zumkeller, Jun 01 2005 From the Taylor expansion of log(1 + x + x^2) at x = 1, Sum_{k > 0} a(k)/k = log(3) = A002391. This is case n = 3 of the general expression Sum_{k > 0} (1-n*!(k mod n))/k = log(n). - Jaume Oliver Lafont, Oct 16 2009 If used with offset zero, a non-simple continued fraction representation of 2+sqrt(2). - R. J. Mathar, Mar 08 2012 Periodic sequences of this type can be also calculated by a(n) = c + floor(q/(p^m-1)*p^n) mod p, where c is a constant, q is the number representing the periodic digit pattern and m is the period length. c, p and q can be calculated as follows: Let D be the array representing the number pattern to be repeated, m = size of D, max = maximum value of elements in D, min = minimum value of elements in D. Than c := min, p := max - min + 1 and q := p^m*Sum_{i=1..m} (D(i)-min)/p^i. Example: D = (1, 1, -2), c = -2, p = 4 and q = 60 for this sequence. - Hieronymus Fischer, Jan 04 2013 This is the Dirichlet inverse of A117997. - Petros Hadjicostas, Jul 25 2020 LINKS W. Florek, A class of generalized Tribonacci sequences applied to counting problems, Appl. Math. Comput., 338 (2018), 809-821. Ralph E. Griswold, Shaft Sequences, 2001 (see also here). Tanya Khovanova, Recursive Sequences. W. O. J. Moser, Cyclic binary strings without long runs of like (alternating) bits, Fibonacci Quart. 31(1) (1993), 2-6. Index entries for linear recurrences with constant coefficients, signature (-1,-1). FORMULA With offset zero, a(n) = A057079(2n). a(n) = -a(n-1) - a(n-2) with a(0) = a(1) = 1. From Mario Catalani (mario.catalani(AT)unito.it), Jan 07 2003: (Start) G.f.: x*(1 + 2*x)/(1 + x + x^2). a(n) = (-1)^floor(2n/3) + ((-1)^floor((2n-1)/3) + (-1)^floor((2n+1)/3))/2. (End) a(n) = -(n mod 3) + (n+1) mod 3. - Paolo P. Lava, Oct 20 2006 a(n) = -2*cos(2*Pi*n/3). - Jaume Oliver Lafont, May 06 2008 Dirichlet g.f.: zeta(s)*(1-1/3^(s-1)). - R. J. Mathar, Feb 09 2011 a(n) = n * Sum_{k=1..n} binomial(k,n-k)/k*(-1)^(k+1). - Dmitry Kruchinin, Jun 03 2011 a(n) = -2 + floor(110/333*10^(n+1)) mod 10. - Hieronymus Fischer, Jan 04 2013 a(n) = -2 + floor(20/21*4^(n+1)) mod 4. - Hieronymus Fischer, Jan 04 2013 a(n) = a(n-3) for n > 3. - Wesley Ivan Hurt, Jul 01 2016 E.g.f.: 2 - 2*cos(sqrt(3)*x/2)*exp(-x/2). - Ilya Gutkovskiy, Jul 01 2016 a(n) = (-1)^n*hypergeom([-n/2-1, -n/2-3/2], [-n-2], 4). - Peter Luschny, Dec 17 2016 a(n) = A000032(n) - A007040(n), for n > 1. - Wojciech Florek, Feb 20 2018 EXAMPLE G.f.: x + x^2 - 2*x^3 + x^4 + x^5 - 2*x^6 + x^7 + x^8 - 2*x^9 + ... - Michael Somos, Nov 27 2019 MAPLE seq(op([1, 1, -2]), n=1..50); # Wesley Ivan Hurt, Jul 01 2016 MATHEMATICA a[n_] := {1, 1, -2}[[Mod[n - 1, 3] + 1]]; Table[a[n], {n, 108}] (* Jean-François Alcover, Jul 19 2013 *) PadRight[{}, 90, {1, 1, -2}] (* After Harvey P. Dale, or *) CoefficientList[ Series[(2x + 1)/(x^2 + x + 1), {x, 0, 89}], x]  (* or *) LinearRecurrence[{-1, -1}, {1, 1}, 90] (* Robert G. Wilson v, Jul 30 2018 *) PROG (PARI) a(n)=1-3*!(n%3) \\ Jaume Oliver Lafont, Oct 16 2009 (Sage) def A061347():     x, y = -1, -1     while True:         yield -x         x, y = y, -x -y a = A061347(); [next(a) for i in range(40)] # Peter Luschny, Jul 11 2013 (MAGMA) &cat [[1, 1, -2]^^30]; // Wesley Ivan Hurt, Jul 01 2016 (GAP) Flat(List([1..50], n->[1, 1, -2])); # Muniru A Asiru, Aug 02 2018 CROSSREFS Apart from signs, same as A057079, A100063. Cf. A000045, A010892 for the rules a(n) = a(n - 1) + a(n - 2), a(n) = a(n - 1) - a(n - 2). a(n) = - a(n - 1) + a(n - 2) gives a signed version of Fibonacci numbers. Alternating row sums of A130777: repeat(1,-2,1). Cf. A000032, A002391, A007040, A100886, A108299, A117997, A320769. Sequence in context: A101825 A177702 A131534 * A115579 A115573 A152851 Adjacent sequences:  A061344 A061345 A061346 * A061348 A061349 A061350 KEYWORD sign,easy,mult AUTHOR Jason Earls, Jun 07 2001 EXTENSIONS Better definition from M. F. Hasler, Jan 13 2013 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified April 12 00:32 EDT 2021. Contains 342912 sequences. (Running on oeis4.)