login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A010872 a(n) = n mod 3. 102
0, 1, 2, 0, 1, 2, 0, 1, 2, 0, 1, 2, 0, 1, 2, 0, 1, 2, 0, 1, 2, 0, 1, 2, 0, 1, 2, 0, 1, 2, 0, 1, 2, 0, 1, 2, 0, 1, 2, 0, 1, 2, 0, 1, 2, 0, 1, 2, 0, 1, 2, 0, 1, 2, 0, 1, 2, 0, 1, 2, 0, 1, 2, 0, 1, 2, 0, 1, 2, 0, 1, 2, 0, 1, 2, 0, 1, 2, 0, 1, 2, 0, 1, 2, 0, 1, 2, 0, 1, 2, 0, 1, 2, 0, 1, 2, 0, 1, 2, 0, 1, 2, 0, 1, 2 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,3

COMMENTS

Fixed point of morphism 0 -> 01, 1 -> 20, 2 -> 12.

Complement of A002264, since 3*A002264(n) + a(n) = n. - Hieronymus Fischer, Jun 01 2007

LINKS

Table of n, a(n) for n=0..104.

Paul Barry, On a Central Transform of Integer Sequences, arXiv:2004.04577 [math.CO], 2020.

Ralph E. Griswold, Shaft Sequences

Ralph E. Griswold, Shaft Sequences [From the Wayback machine]

Index entries for linear recurrences with constant coefficients, signature (0,0,1).

Index entries for sequences that are fixed points of mappings

FORMULA

a(n) = n - 3*floor(n/3) = a(n-3).

G.f.: (2*x^2+x)/(1-x^3). - Mario Catalani (mario.catalani(AT)unito.it), Jan 08 2003

a(n) = 1 + (1-2*cos(2*Pi*(n-1)/3)) * sin(2*Pi*(n-1)/3)) / sqrt(3).

Complex representation: a(n) = (1-r^n)*(1+r^n/(1-r)) where r=exp(2*Pi/3*i)=(-1+sqrt(3)*i)/2 and i=sqrt(-1). - Hieronymus Fischer, May 29 2007; corrected by Guenther Schrack, Sep 23 2019

a(n) = (16/9)*((sin(Pi*(n-2)/3))^2+2*(sin(Pi*(n-1)/3))^2)*(sin(Pi*n/3))^2.

a(n) = (4/3)*(|sin(Pi*(n-2)/3)|+2*|sin(Pi*(n-1)/3)|)*|sin(Pi*n/3)|.

a(n) = (4/9)*((1-cos(2*Pi*(n-2)/3))+2*(1-cos(2*Pi*(n-1)/3)))*(1-cos(2*Pi*n/3)). These formulas can be easily adapted to represent any periodic sequence. - Hieronymus Fischer, Jun 01 2007

Trigonometric formulas above edited for better readability by Hieronymus Fischer, Nov 22 2011

a(n) = 3 - a(n-1) - a(n-2) for n > 1. - Reinhard Zumkeller, Apr 13 2008

a(n) = 1-2*sin(4*Pi*(n+2)/3)/sqrt(3). - Jaume Oliver Lafont, Dec 05 2008

From Wesley Ivan Hurt, May 27 2015, Mar 22 2016: (Start)

a(n) = 1 - 0^((-1)^(n/3)-(-1)^n) + 0^((-1)^((n+1)/3)+(-1)^n).

a(n) = 1 + (-1)^((2*n+4)/3)/3 + (-1)^((-2*n-4)/3)/3 + 2*(-1)^((2*n+2)/3)/3 + 2*(-1)^((-2*n-2)/3)/3.

a(n) = 1 + 2*cos(Pi*(2*n+4)/3)/3 + 4*cos(Pi*(2*n+2)/3)/3. (End)

a(n) = (r^n*(r-1) - r^(2*n)*(r + 2) + 3)/3 where r = (-1 + sqrt(-3))/2. - Guenther Schrack, Sep 23 2019

E.g.f.: exp(x) - exp(-x/2)*(cos(sqrt(3)*x/2) + sin(sqrt(3)*x/2)/sqrt(3)). - Stefano Spezia, Mar 01 2020

EXAMPLE

G.f. = x + 2*x^2 + x^4 + 2*x^5 + x^7 + 2*x^8 + x^10 + 2*x^11 + x^13 + ...

MAPLE

A010872:=n->(n mod 3): seq(A010872(n), n=0..100); # Wesley Ivan Hurt, May 27 2015

MATHEMATICA

Nest[ Function[ l, {Flatten[(l /. {0 -> {0, 1}, 1 -> {2, 0}, 2 -> {1, 2}})]}], {0}, 7] (* Robert G. Wilson v, Feb 28 2005 *)

PROG

(Haskell)

a010872 = (`mod` 3)

a010872_list = cycle [0, 1, 2]  -- Reinhard Zumkeller, May 26 2012

(MAGMA) [n mod 3 : n in [0..100]]; // Wesley Ivan Hurt, May 27 2015

(PARI) x='x+O('x^200); concat(0, Vec((2*x^2+x)/(1-x^3))) \\ Altug Alkan, Mar 23 2016

CROSSREFS

Cf. A000035, A010873. A080425, A004526, A002264, A002265, A002266, A102283.

Cf. partial sums: A130481.

Other related sequences are A130482, A130483, A130484, A130485.

Sequence in context: A112248 A244860 A308009 * A220663 A220659 A025858

Adjacent sequences:  A010869 A010870 A010871 * A010873 A010874 A010875

KEYWORD

easy,nonn

AUTHOR

N. J. A. Sloane

EXTENSIONS

Edited by Joerg Arndt, Apr 21 2014

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified March 6 20:37 EST 2021. Contains 341850 sequences. (Running on oeis4.)