login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A005585 5-dimensional pyramidal numbers: n(n+1)(n+2)(n+3)(2n+3)/5!.
(Formerly M4387)
36
1, 7, 27, 77, 182, 378, 714, 1254, 2079, 3289, 5005, 7371, 10556, 14756, 20196, 27132, 35853, 46683, 59983, 76153, 95634, 118910, 146510, 179010, 217035, 261261, 312417, 371287, 438712, 515592, 602888, 701624, 812889, 937839, 1077699, 1233765, 1407406 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,2

COMMENTS

Convolution of triangular numbers (A000217) and squares (A000290) (n>=1). - Graeme McRae, Jun 07 2006

p^k divides a(p^k-3), a(p^k-2), a(p^k-1) and a(p^k) for prime p>5 and integer k>0. p^k divides a((p^k-3)/2)) for prime p>5 and integer k>0. - Alexander Adamchuk, May 08 2007

If a 2-set Y and an (n-3)-set Z are disjoint subsets of an n-set X then a(n-5) is the number of 6-subsets of X intersecting both Y and Z. - Milan Janjic, Sep 08 2007

5-dimensional square numbers, fourth partial sums of binomial transform of [1,2,0,0,0,...]. a(n) = sum{i=0,n,C(n+4,i+4)*b(i)}, where b(i)=[1,2,0,0,0,...]. [Borislav St. Borisov (b.st.borisov(AT)abv.bg), Mar 05 2009]

Antidiagonal sums of the convolution array A213550. - Clark Kimberling, Jun 17 2012

Binomial transform of (1, 6, 14, 16, 9, 2, 0, 0, 0, ...). - Gary W. Adamson, Jul 28 2015

2*a(n) is number of ways to place 4 queens on an (n+3) X (n+3) chessboard so that they diagonally attack each other exactly 6 times. The maximal possible attack number, p=binomial(k,2)=6 for k=4 queens, is achievable only when all queens are on the same diagonal. In graph-theory representation they thus form a corresponding complete graph. - Antal Pinter, Dec 27 2015

REFERENCES

M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 797.

N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

LINKS

Alexander Adamchuk and Vincenzo Librandi, Table of n, a(n) for n = 1..1000 (first 121 terms from Alexander Adamchuk)

M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards, Applied Math. Series 55, Tenth Printing, 1972 [alternative scanned copy].

R. K. Guy, Letter to N. J. A. Sloane, Feb 1988

Milan Janjic, Two Enumerative Functions

C. H. Karlson & N. J. A. Sloane, Correspondence, 1974

Simon Plouffe, Approximations de séries génératrices et quelques conjectures, Dissertation, Université du Québec à Montréal, 1992.

Simon Plouffe, 1031 Generating Functions and Conjectures, Université du Québec à Montréal, 1992.

R. P. Stanley, F. Zanello, The Catalan case of Armstrong's conjecture on core partitions, arXiv preprint arXiv:1312.4352 [math.CO], 2013.

Index entries for sequences related to Chebyshev polynomials.

Index to sequences related to pyramidal numbers

Index entries for linear recurrences with constant coefficients, signature (6,-15,20,-15,6,-1).

FORMULA

G.f.: x*(1+x)/(1-x)^6.

a(n) = 2*C(n+4, 5) - C(n+3, 4). - Paul Barry, Mar 04 2003

a(n) = C(n+3, 5) + C(n+4, 5). - Paul Barry, Mar 17 2003

a(n) = C(n+2, 6) - C(n, 6), n>=4. - Zerinvary Lajos, Jul 21 2006

a(n) = Sum[ T(k)*T(k+1)/3, {k,1,n} ], where T(n) = n(n+1)/2 is a triangular number. - Alexander Adamchuk, May 08 2007

a(n-1) = (1/4)*sum {1 <= x_1, x_2 <= n} |x_1*x_2*det V(x_1,x_2)| = (1/4)*sum {1 <= i,j <= n} i*j*|i-j|, where V(x_1,x_2} is the Vandermonde matrix of order 2. First differences of A040977. - Peter Bala, Sep 21 2007

a(n) = C(n+4,4)+2*C(n+4,5). [Borislav St. Borisov (b.st.borisov(AT)abv.bg), Mar 05 2009]

a(1) = 1, a(2)=7, a(3)=27, a(4)=77, a(5)=182, a(6)=378, a(n)=6*a(n-1)- 15*a(n-2)+20*a(n-3)-15*a(n-4)+6*a(n-5)-a(n-6). - Harvey P. Dale, Oct 04 2011

a(n) = (1/6)*sum_{i=1..n+1}( i*sum_{k=1..i} (i-1)*k ). - Wesley Ivan Hurt, Nov 19 2014

E.g.f.: x*(2*x^4+35*x^3+180*x^2+300*x+120)*exp(x)/120. - Robert Israel, Nov 19 2014

MAPLE

[seq(binomial(n+2, 6)-binomial(n, 6), n=4..45)]; # Zerinvary Lajos, Jul 21 2006

A005585:=(1+z)/(z-1)**6; # Simon Plouffe in his 1992 dissertation

MATHEMATICA

s1=s2=s3=0; lst={}; Do[s1+=n^2; s2+=s1; s3+=s2; AppendTo[lst, s3], {n, 0, 6!}]; lst (* Vladimir Joseph Stephan Orlovsky, Jan 15 2009 *)

With[{c=5!}, Table[n(n+1)(n+2)(n+3)(2n+3)/c, {n, 40}]] (* or *) LinearRecurrence[ {6, -15, 20, -15, 6, -1}, {1, 7, 27, 77, 182, 378}, 40] (* Harvey P. Dale, Oct 04 2011 *)

CoefficientList[Series[(1 + x) / (1 - x)^6, {x, 0, 50}], x] (* Vincenzo Librandi, Jun 09 2013 *)

PROG

(MAGMA) I:=[1, 7, 27, 77, 182, 378]; [n le 6 select I[n] else 6*Self(n-1)-15*Self(n-2)+20*Self(n-3)-15*Self(n-4)+6*Self(n-5)-Self(n-6): n in [1..40]]; // Vincenzo Librandi, Jun 09 2013

(PARI) a(n)=binomial(n+3, 4)*(2*n+3)/5 \\ Charles R Greathouse IV, Jul 28 2015

CROSSREFS

a(n) = ((-1)^(n+1))*A053120(2*n+3, 5)/16, (1/16 of sixth unsigned column of Chebyshev T-triangle, zeros omitted).

Partial sums of A002415.

Cf. A006542, A040977, A047819, A111125 (third column).

Cf. a(n) = ((-1)^(n+1))*A084960(n+1, 2)/16. (compare with the first line) - Wolfdieter Lang, Aug 04 2014

Sequence in context: A162210 A161716 A162493 * A161410 A267169 A266761

Adjacent sequences:  A005582 A005583 A005584 * A005586 A005587 A005588

KEYWORD

nonn,easy

AUTHOR

N. J. A. Sloane

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified September 22 00:25 EDT 2017. Contains 292326 sequences.