This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A005583 Coefficients of Chebyshev polynomials. (Formerly M1999) 9
 2, 11, 36, 91, 196, 378, 672, 1122, 1782, 2717, 4004, 5733, 8008, 10948, 14688, 19380, 25194, 32319, 40964, 51359, 63756, 78430, 95680, 115830, 139230, 166257, 197316, 232841, 273296, 319176, 371008, 429352, 494802, 567987, 649572, 740259, 840788 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 COMMENTS If X is an n-set and Y a fixed 2-subset of X then a(n-5) is equal to the number of (n-5)-subsets of X intersecting Y. - Milan Janjic, Jul 30 2007 a(n-1) = risefac(n,5)/5! - risefac(n,3)/3! is for n >= 1 also the number of independent components of a symmetric traceless tensor of rank 5 and dimension n. Here risefac is the rising factorial. Put a(0) = 0. - Wolfdieter Lang, Dec 10 2015 REFERENCES M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), Table 22.7, p. 797. N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence). LINKS Vincenzo Librandi, Table of n, a(n) for n = 1..172 Milan Janjic, Two Enumerative Functions M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards, Applied Math. Series 55, Tenth Printing, 1972 [alternative scanned copy]. R. K. Guy, Letter to N. J. A. Sloane, Feb 1988 Simon Plouffe, Approximations de séries génératrices et quelques conjectures, Dissertation, Université du Québec à Montréal, 1992. Simon Plouffe, 1031 Generating Functions and Conjectures, Université du Québec à Montréal, 1992. C. Rossiter, Depictions, Explorations and Formulas of the Euler/Pascal Cube. [broken link] FORMULA G.f.: x*(2-x)/(1-x)^6. a(n) = binomial(n+4, n-1) + binomial(n+3, n-1) = (1/120)*n*(n+9)*(n+3)*(n+2)*(n+1). a(n+1) = -A127672(10+n, n), n >= 0, with the coefficients of the Chebyshev C-polynomials A127672(n, k). - Wolfdieter Lang, Dec 10 2015 a(n) = Sum_{i=1..n} A000217(i)*A000096(n+1-i). - Bruno Berselli, Mar 05 2018 a(n) = binomial(n+3,5) + 2*binomial(n+3,4). - Yuchun Ji, May 23 2019 MAPLE A005583:=-(-2+z)/(z-1)**6; # Simon Plouffe in his 1992 dissertation (this g.f. assumes offset 0) PROG (PARI) conv(u, v)=local(w); w=vector(length(u), i, sum(j=1, i, u[j]*v[i+1-j])); w; t(n)=n*(n+1)/2; u=vector(10, i, t(i)); v=vector(10, i, t(i)-1); conv(u, v) (PARI) a(n) = (1/120)*n*(n+9)*(n+3)*(n+2)*(n+1); \\ Joerg Arndt, Mar 05 2018 CROSSREFS Cf. A000096, A000217, A000389, A051747, A127672. Column 3 of A207606. Sequence in context: A316322 A238706 A071244 * A176916 A015519 A096977 Adjacent sequences:  A005580 A005581 A005582 * A005584 A005585 A005586 KEYWORD nonn,easy AUTHOR EXTENSIONS More terms from Klaus Strassburger (strass(AT)ddfi.uni-duesseldorf.de), Dec 07 1999 More terms from Zerinvary Lajos, Jul 21 2006 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified October 22 22:34 EDT 2019. Contains 328335 sequences. (Running on oeis4.)