login
A213550
Rectangular array: (row n) = b**c, where b(h) = h*(h+1)/2, c(h) = n-1+h, n>=1, h>=1, and ** = convolution.
7
1, 5, 2, 15, 9, 3, 35, 25, 13, 4, 70, 55, 35, 17, 5, 126, 105, 75, 45, 21, 6, 210, 182, 140, 95, 55, 25, 7, 330, 294, 238, 175, 115, 65, 29, 8, 495, 450, 378, 294, 210, 135, 75, 33, 9, 715, 660, 570, 462, 350, 245, 155, 85, 37, 10, 1001, 935, 825, 690, 546
OFFSET
1,2
COMMENTS
Principal diagonal: A002418
Antidiagonal sums: A005585
row 1, (1,3,6,...)**(1,2,3,...): A000332
row 2, (1,3,6,...)**(2,3,4,...): A005582
row 3, (1,3,6,...)**(3,4,5,...): A095661
row 4, (1,3,6,...)**(4,5,6,...): A095667
For a guide to related arrays, see A213500.
FORMULA
T(n,k) = 5*T(n,k-1) - 10*T(n,k-2) + 10*T(n,k-3) - 5*T(n,k-4) + T(n,k-5).
G.f. for row n: f(x)/g(x), where f(x) = n-(n-1)*x and g(x) = (1 - x)^5.
EXAMPLE
Northwest corner (the array is read by falling antidiagonals):
1....5....15...35....70....126
2....9....25...55....105...182
3....13...35...75....140...238
4....17...45...95....175...294
5....21...55...115...210...350
MATHEMATICA
b[n_] := n (n + 1)/2; c[n_] := n
t[n_, k_] := Sum[b[k - i] c[n + i], {i, 0, k - 1}]
TableForm[Table[t[n, k], {n, 1, 10}, {k, 1, 10}]]
Flatten[Table[t[n - k + 1, k], {n, 12}, {k, n, 1, -1}]]
r[n_] := Table[t[n, k], {k, 1, 60}] (* A213550 *)
d = Table[t[n, n], {n, 1, 40}] (* A002418 *)
s[n_] := Sum[t[i, n + 1 - i], {i, 1, n}]
s1 = Table[s[n], {n, 1, 50}] (* A005585 *)
CROSSREFS
Sequence in context: A191722 A191435 A128142 * A283242 A246209 A297979
KEYWORD
nonn,tabl,easy
AUTHOR
Clark Kimberling, Jun 16 2012
STATUS
approved