login
A006960
Reverse and Add! sequence starting with 196.
(Formerly M5410)
46
196, 887, 1675, 7436, 13783, 52514, 94039, 187088, 1067869, 10755470, 18211171, 35322452, 60744805, 111589511, 227574622, 454050344, 897100798, 1794102596, 8746117567, 16403234045, 70446464506, 130992928913, 450822227944, 900544455998, 1800098901007, 8801197801088, 17602285712176
OFFSET
0,1
COMMENTS
196 is conjectured to be the smallest initial term which does not lead to a palindrome. John Walker, Tim Irvin and others have extended the trajectory of 196 to millions of digits without finding a palindrome.
From A.H.M. Smeets, Jan 31 2019: (Start)
Palindromes for a(9)/2, a(14)/2 and a(20)/2.
Observed: It seems that most, but not all, Lychrel numbers (seeds given in A063048) have a trajectory term that, divided by 2, becomes palindromic. Note that 196 is the first Lychrel number (A063048(1)). (End)
Observed: On average, 0.414 digits are gained by each step of the reverse and add procedure; i.e., 2.416 steps are needed on average to gain a factor of 10. This holds for any trajectory of reverse and add for decimal number representation. - A.H.M. Smeets, Feb 03 2019
REFERENCES
J.-M. De Koninck, Ces nombres qui nous fascinent, Entry 196, p. 58, Ellipses, Paris 2008.
D. H. Lehmer, "Sujets d'étude. No. 74," Sphinx (Bruxelles), 8 (1938), 12-13. (This is the currently earliest known reference to the 196 Problem). - James D. Klein, Apr 09 2012.
Daniel Lignon, Dictionnaire de (presque) tous les nombres entiers, Ellipses, Paris, 2012, 702 pages. See Entry 196.
Clifford A. Pickover, A Passion for Mathematics, Wiley, 2005; see p. 70.
Popular Computing (Calabasas, CA), The 196 Problem, Vol. 3 (No. 30, Sep 1975), pages PC30-6 to PC30-9.
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
T. D. Noe and Michael Lee, Table of n, a(n) for n = 0..2390 (T. D. Noe supplied terms 0 to 200)
Patrick De Geest, Some thematic websources
Jason Doucette, World Records
Martianus Frederic Ezerman, Bertrand Meyer and Patrick Sole, On Polynomial Pairs of Integers, arXiv:1210.7593 [math.NT], 2012. - From N. J. A. Sloane, Nov 08 2012
Fred Gruenberger, How to handle numbers with thousands of digits, and why one might want to, Computer Recreations, Scientific American, 250 (No. 4, 1984), 19-26.
R. K. Guy, What's left?, Math Horizons, Vol. 5, No. 4 (April 1998), pp. 5-7.
Madras Math's Amazing Number Facts, The Ultimate Palindrome
Wade VanLandingham, 196 and Other Lychrel Numbers
Eric Weisstein's World of Mathematics, 196-Algorithm.
Eric Weisstein's World of Mathematics, Palindromic Number Conjecture.
FORMULA
a(n+1) = A056964(a(n)). - A.H.M. Smeets, Jan 27 2019
EXAMPLE
From M. F. Hasler, Apr 13 2019: (Start)
Start with 196 = a(0), then:
A056964(196) = 196 + 691 = 887 = a(1); then:
A056964(887) = 887 + 788 = 1675 = a(2); then:
A056964(1675) = 1675 + 5761 = 7436 = a(3); then:
A056964(7436) = 7436 + 6347 = 13783 = a(4); then:
A056964(13783) = 13783 + 38731 = 52514 = a(5); etc. (End)
MAPLE
a:= proc(n) option remember; `if`(n=0, 196, (h-> h+ (s->
parse(cat(s[-i]$i=1..length(s))))(""||h))(a(n-1)))
end:
seq(a(n), n=0..40); # Alois P. Heinz, Jul 25 2014
MATHEMATICA
a = {196}; For[i = 2, i < 26, i++, a = Append[a, a[[i - 1]] + ToExpression[ StringReverse[ToString[a[[i - 1]]]]]]]; a
NestList[#+FromDigits[Reverse[IntegerDigits[#]]]&, 196, 25] (* Harvey P. Dale, Jun 05 2011 *)
NestList[#+IntegerReverse[#]&, 196, 25] (* Requires Mathematica version 10 or later *) (* Harvey P. Dale, Jan 04 2019 *)
PROG
(Haskell)
a006960 n = a006960_list !! n
a006960_list = iterate a056964 196 -- Reinhard Zumkeller, Sep 22 2011
(PARI) A006960_vec(N=99)=vector(N, i, N=if(i>1, A056964(N), 196)) \\ M. F. Hasler, Apr 13 2019
CROSSREFS
KEYWORD
nonn,base,nice,easy
EXTENSIONS
More terms from Vit Planocka (planocka(AT)mistral.cz), Sep 28 2002
STATUS
approved