login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A060240
Triangle T(n,k) in which n-th row gives degrees of irreducible representations of symmetric group S_n.
39
1, 1, 1, 1, 1, 1, 2, 1, 1, 2, 3, 3, 1, 1, 4, 4, 5, 5, 6, 1, 1, 5, 5, 5, 5, 9, 9, 10, 10, 16, 1, 1, 6, 6, 14, 14, 14, 14, 15, 15, 20, 21, 21, 35, 35, 1, 1, 7, 7, 14, 14, 20, 20, 21, 21, 28, 28, 35, 35, 42, 56, 56, 64, 64, 70, 70, 90, 1, 1, 8, 8, 27, 27, 28, 28, 42, 42, 42, 48, 48, 56, 56, 70, 84
OFFSET
0,7
COMMENTS
Sum_{k>=1} T(n,k)^2 = n!. - R. J. Mathar, May 09 2013
From Emeric Deutsch, Oct 31 2014: (Start)
Number of entries in row n = A000041(n) = number of partitions of n.
Sum of entries in row n = A000085(n).
Largest (= last) entry in row n = A003040(n).
The entries in row n give the number of standard Young tableaux of the Ferrers diagrams of the partitions of n (nondecreasingly). (End)
REFERENCES
J. H. Conway, R. T. Curtis, S. P. Norton, R. A. Parker and R. A. Wilson, ATLAS of Finite Groups, Oxford Univ. Press, 1985.
B. E. Sagan, The Symmetric Group, 2nd ed., Springer, 2001, New York.
LINKS
J. S. Frame, G. de B. Robinson, and R. M. Thrall, The hook graphs of the symmetric group Canad. J. Math, 6:316-324, 1954. See Theorem 1, p. 318.
EXAMPLE
Triangle begins:
1;
1;
1, 1;
1, 1, 2;
1, 1, 2, 3, 3;
1, 1, 4, 4, 5, 5, 6;
...
MAPLE
h:= proc(l) local n; n:= nops(l); add(i, i=l)!/mul(mul(1+l[i]-j+
add(`if`(l[k]>=j, 1, 0), k=i+1..n), j=1..l[i]), i=1..n) end:
g:= (n, i, l)-> `if`(n=0 or i=1, h([l[], 1$n]), `if`(i<1, 0,
seq(g(n-i*j, i-1, [l[], i$j]), j=0..n/i))):
T:= n-> sort([g(n, n, [])])[]:
seq(T(n), n=0..10); # Alois P. Heinz, Jan 07 2013
MATHEMATICA
h[l_List] := With[{n = Length[l]}, Total[l]!/Product[Product[1+l[[i]]-j + Sum[If[l[[k]] >= j, 1, 0], {k, i+1, n}], {j, 1, l[[i]]}], {i, 1, n}]];
g[n_, i_, l_List] := If[n == 0 || i == 1, h[Join[l, Array[1&, n]]], If[i<1, 0, Flatten @ Table[g[n-i*j, i-1, Join[l, Array[i&, j]]], {j, 0, n/i}]]];
T[n_] := Sort[g[n, n, {}]]; T[1] = {1};
Table[T[n], {n, 1, 10}] // Flatten (* Jean-François Alcover, Jan 27 2014, after Alois P. Heinz *)
PROG
(Magma) CharacterTable(SymmetricGroup(6)); // (say)
CROSSREFS
Rows give A003870, A003871, etc. Cf. A060241, A060246, A060247.
Maximal entry in each row gives A003040.
Sequence in context: A124287 A253240 A290472 * A153734 A285554 A128495
KEYWORD
nonn,tabf,nice,look,easy
AUTHOR
N. J. A. Sloane, Mar 21 2001
EXTENSIONS
More terms from Vladeta Jovovic, May 20 2003
STATUS
approved