login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A224653
Irregular table which shows in row n the dimensions of the irreducible representations of the permutation group of order n!.
2
1, 1, 1, 1, 2, 1, 2, 3, 1, 4, 5, 6, 1, 5, 9, 10, 16, 1, 6, 14, 15, 20, 21, 35, 1, 7, 14, 20, 21, 28, 35, 42, 56, 64, 70, 90, 1, 8, 27, 28, 42, 48, 56, 70, 84, 105, 120, 162, 168, 189, 216, 1, 9, 35, 36, 42, 75, 84, 90, 126, 160, 210, 225, 252, 288, 300, 315, 350, 448, 450, 525, 567, 768
OFFSET
0,5
COMMENTS
This is triangle A060240 if duplicates in individual rows are removed.
The entries in row n give the number of standard Young tableaux of the Ferrers diagrams of the partitions of n (without duplicates, increasingly). Example: n = 4; there are 5 partitions of 4: [4], [3,1], [2,2], [2,1,1], and [1,1,1,1]; their Ferrers graphs have 1, 3, 2, 3, and 1 standard tableaux, respectively. - Emeric Deutsch, May 26 2015
LINKS
EXAMPLE
The group of permutations of [8] has 2 representations of dimension 1, 2 of dimension 7, 2 of dimension 14, 2 of dimension 20, 2 of dimension 21, 2 of dimension 28, 2 of dimension 35, 1 of dimension 42, 2 of dimension 56, 2 of dimension 64, 2 of dimension of 70 and 1 of dimension 90.
1;
1;
1;
1,2;
1,2,3;
1,4,5,6;
1,5,9,10,16;
1,6,14,15,20,21,35;
1,7,14,20,21,28,35,42,56,64,70,90;
1,8,27,28,42,48,56,70,84,105,120,162,168,189,216;
1,9,35,36,42,75,84,90,126,160,210,225,252,288,300,315,350,448,450,525,567,768;
MAPLE
h:= proc(l) local n; n:= nops(l); add(i, i=l)!/mul(mul(1+l[i]-j+
add(`if`(l[k]>=j, 1, 0), k=i+1..n), j=1..l[i]), i=1..n) end:
g:= (n, i, l)-> `if`(n=0 or i=1, h([l[], 1$n]), `if`(i<1, 0,
seq(g(n-i*j, i-1, [l[], i$j]), j=0..n/i))):
T:= n-> sort([{g(n$2, [])}[]])[]:
seq(T(n), n=0..12); # Alois P. Heinz, May 26 2015
MATHEMATICA
h[l_List] := Module[{n}, n = Length[l]; Total[l]!/Product[Product[1 + l[[i]] - j + Sum[If[l[[k]] >= j, 1, 0], {k, i+1, n}], {j, 1, l[[i]]}], {i, 1, n}]]; g[n_, i_, l_List] := If[n==0 || i==1, h[Join[l, Array[1&, n]]], If[i<1, 0, Table[g[n - i*j, i-1, Join [l, Array[i&, j]]], {j, 0, n/i}]]]; T[n_] := g[n, n, {}] // Flatten // Union; T[1] = {1}; Table[T[n], {n, 1, 12}] // Flatten (* Jean-François Alcover, Jul 03 2015, after Alois P. Heinz *)
CROSSREFS
Cf. A060240.
Sequence in context: A055889 A125930 A210790 * A101391 A327632 A117704
KEYWORD
nonn,tabf
AUTHOR
R. J. Mathar, May 09 2013
STATUS
approved