login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A378980
Numbers k such that (A003961(k)-2*k) divides (A003961(k)-sigma(k)), where A003961 is fully multiplicative with a(prime(i)) = prime(i+1), and sigma is the sum of divisors function.
13
1, 2, 3, 4, 6, 7, 10, 25, 26, 28, 33, 46, 55, 57, 69, 91, 93, 496, 1034, 1054, 1558, 2211, 2626, 4825, 8128, 11222, 12046, 12639, 28225, 32043, 68727, 89575, 970225, 1392386, 2245557, 8550146, 12371554, 16322559, 22799825, 33550336, 48980427, 51326726, 55037217, 60406599, 68258725, 142901438, 325422273, 342534446
OFFSET
1,2
COMMENTS
Numbers k such that A252748(k) divides A286385(k).
Conjecture: Apart from a(5)=6, this is a subsequence of A319630, i.e., for all terms k<>6, gcd(k, A003961(k)) = 1. See also A372562, A372566.
MATHEMATICA
f1[p_, e_] := (p^(e + 1) - 1)/(p - 1); f2[p_, e_] := NextPrime[p]^e; q[k_] := Module[{fct = FactorInteger[k], m, s}, s = Times @@ f1 @@@ fct; m = Times @@ f2 @@@ fct; Divisible[m - s, m - 2*k]]; q[1] = True; Select[Range[10^5], q] (* Amiram Eldar, Dec 19 2024 *)
PROG
(PARI)
A003961(n) = { my(f = factor(n)); for(i=1, #f~, f[i, 1] = nextprime(f[i, 1]+1)); factorback(f); };
A378981(n) = { my(u=A003961(n)); ((u-sigma(n))%((2*n)-u)); };
isA378980(n) = !A378981(n);
CROSSREFS
Positions of 0's in A378981.
Subsequence of A263837.
Subsequences: A000396, A048674, A348514, A326134, A349753 (odd terms of this sequence).
Cf. also A378983.
Sequence in context: A271340 A377171 A362851 * A117851 A050679 A342684
KEYWORD
nonn
AUTHOR
Antti Karttunen, Dec 12 2024
STATUS
approved