login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A117851
Numbers j such that j^3 is of the form semiprime(k) + k-th composite number.
0
2, 3, 4, 6, 7, 10, 29, 30, 33, 35, 36, 41, 42, 46, 53, 61, 72, 74, 77, 82, 88, 99, 106, 121, 123, 127, 133, 146, 150, 159, 164, 170, 175, 180, 194, 214, 221, 231, 233, 248, 257, 262, 267, 271, 274, 278, 287, 289, 290, 303, 304, 308, 311, 316, 318, 324
OFFSET
1,1
COMMENTS
Corresponding k's: 1, 6, 15, 50, 78, 219, 4803, 5303, 6973, 8261, 8968, 13058, 13972, 18210, 27426, 41167, ...,.
FORMULA
a(n) = A112662(n)^(1/3).
MATHEMATICA
Composite[n_Integer] := FixedPoint[n + PrimePi@# + 1 &, n + PrimePi@n + 1]; SemiPrimePi[n_] := Sum[PrimePi[n/Prime@i] - i + 1, {i, PrimePi@Sqrt@n}]; SemiPrime[n_] := Block[{e = Floor[Log[2, n] + 1], a, b}, a = 2^e; Do[b = 2^p; While[SemiPrimePi[a] < n, a = a + b]; a = a - b/2, {p, e, 0, -1}]; a + b/2]; lst = {}; Do[c = Composite@n + SemiPrime@n; If[IntegerQ[c^(1/3)], Print[c]], {n, 10^7}]; lst (* Robert G. Wilson v *)
CROSSREFS
Sequence in context: A377171 A362851 A378980 * A050679 A342684 A344625
KEYWORD
nonn
AUTHOR
Robert G. Wilson v, May 01 2006
STATUS
approved