login
A378977
Decimal expansion of the dihedral angle, in radians, between any two adjacent faces in a triakis icosahedron.
7
2, 8, 0, 3, 2, 1, 7, 8, 5, 6, 0, 8, 4, 8, 0, 5, 9, 6, 2, 1, 0, 3, 4, 4, 9, 3, 2, 6, 4, 8, 7, 7, 2, 5, 3, 2, 8, 1, 1, 5, 2, 6, 5, 9, 8, 8, 0, 3, 5, 4, 0, 1, 2, 6, 9, 8, 4, 7, 0, 1, 7, 0, 6, 0, 5, 1, 6, 8, 7, 6, 1, 6, 4, 9, 4, 7, 8, 1, 9, 2, 7, 5, 1, 4, 3, 8, 7, 6, 5, 3
OFFSET
1,1
COMMENTS
The triakis icosahedron is the dual polyhedron of the truncated dodecahedron.
LINKS
Eric Weisstein's World of Mathematics, Triakis Icosahedron.
FORMULA
Equals arccos(-3*(8 + 5*sqrt(5))/61 = arccos(-3*(8 + 5*A002163)/61.
EXAMPLE
2.8032178560848059621034493264877253281152659880354...
MATHEMATICA
First[RealDigits[ArcCos[-3*(8 + 5*Sqrt[5])/61], 10, 100]] (* or *)
First[RealDigits[First[PolyhedronData["TriakisIcosahedron", "DihedralAngles"]], 10, 100]]
CROSSREFS
Cf. A378973 (surface area), A378974 (volume), A378975 (inradius), A378976 (midradius).
Cf. A137218 and A344075 (dihedral angles of a truncated dodecahedron).
Cf. A002163.
Sequence in context: A010594 A370944 A093588 * A369499 A016593 A020818
KEYWORD
nonn,cons,easy
AUTHOR
Paolo Xausa, Dec 14 2024
STATUS
approved