login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Decimal expansion of the dihedral angle, in radians, between any two adjacent faces in a triakis icosahedron.
5

%I #7 Dec 15 2024 07:24:55

%S 2,8,0,3,2,1,7,8,5,6,0,8,4,8,0,5,9,6,2,1,0,3,4,4,9,3,2,6,4,8,7,7,2,5,

%T 3,2,8,1,1,5,2,6,5,9,8,8,0,3,5,4,0,1,2,6,9,8,4,7,0,1,7,0,6,0,5,1,6,8,

%U 7,6,1,6,4,9,4,7,8,1,9,2,7,5,1,4,3,8,7,6,5,3

%N Decimal expansion of the dihedral angle, in radians, between any two adjacent faces in a triakis icosahedron.

%C The triakis icosahedron is the dual polyhedron of the truncated dodecahedron.

%H Paolo Xausa, <a href="/A378977/b378977.txt">Table of n, a(n) for n = 1..10000</a>

%H Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/TriakisIcosahedron.html">Triakis Icosahedron</a>.

%H Wikipedia, <a href="https://en.wikipedia.org/wiki/Triakis_icosahedron">Triakis icosahedron</a>.

%F Equals arccos(-3*(8 + 5*sqrt(5))/61 = arccos(-3*(8 + 5*A002163)/61.

%e 2.8032178560848059621034493264877253281152659880354...

%t First[RealDigits[ArcCos[-3*(8 + 5*Sqrt[5])/61], 10, 100]] (* or *)

%t First[RealDigits[First[PolyhedronData["TriakisIcosahedron", "DihedralAngles"]], 10, 100]]

%Y Cf. A378973 (surface area), A378974 (volume), A378975 (inradius), A378976 (midradius).

%Y Cf. A137218 and A344075 (dihedral angles of a truncated dodecahedron).

%Y Cf. A002163.

%K nonn,cons,easy

%O 1,1

%A _Paolo Xausa_, Dec 14 2024