login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A378974
Decimal expansion of the volume of a triakis icosahedron with unit shorter edge length.
5
1, 2, 0, 1, 7, 2, 2, 0, 9, 2, 6, 8, 7, 4, 3, 1, 6, 5, 1, 3, 3, 2, 9, 8, 1, 4, 4, 2, 3, 3, 7, 6, 6, 4, 7, 7, 6, 5, 1, 8, 2, 0, 0, 9, 6, 6, 8, 7, 3, 7, 4, 5, 8, 6, 0, 3, 8, 8, 0, 4, 1, 6, 0, 4, 7, 5, 8, 4, 1, 9, 3, 0, 0, 8, 3, 2, 2, 8, 6, 5, 9, 2, 3, 0, 9, 6, 8, 4, 6, 8
OFFSET
2,2
COMMENTS
The triakis icosahedron is the dual polyhedron of the truncated dodecahedron.
LINKS
Eric Weisstein's World of Mathematics, Triakis Icosahedron.
FORMULA
Equals (19 + 13*sqrt(5))/4 = (19 + 13*A002163)/4.
EXAMPLE
12.017220926874316513329814423376647765182009668737...
MATHEMATICA
First[RealDigits[(19 + 13*Sqrt[5])/4, 10, 100]] (* or *)
First[RealDigits[PolyhedronData["TriakisIcosahedron", "Volume"], 10, 100]]
CROSSREFS
Cf. A378973 (surface area), A378975 (inradius), A378976 (midradius), A378977 (dihedral angle).
Cf. A377695 (volume of a truncated dodecahedron with unit edge length).
Cf. A002163.
Sequence in context: A362787 A341200 A300130 * A101371 A325754 A154974
KEYWORD
nonn,cons,easy
AUTHOR
Paolo Xausa, Dec 14 2024
STATUS
approved