login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A101371
Triangle read by rows: T(n,k) is the number of noncrossing trees with n edges and k leaves at level 1.
4
1, 0, 1, 2, 0, 1, 7, 4, 0, 1, 34, 14, 6, 0, 1, 171, 72, 21, 8, 0, 1, 905, 370, 114, 28, 10, 0, 1, 4952, 1995, 597, 160, 35, 12, 0, 1, 27802, 11064, 3278, 852, 210, 42, 14, 0, 1, 159254, 62774, 18420, 4762, 1135, 264, 49, 16, 0, 1, 927081, 362614, 105618, 27104, 6455, 1446, 322, 56, 18, 0, 1
OFFSET
0,4
COMMENTS
Row n has n+1 terms.
LINKS
Naiomi Cameron and J. E. McLeod, Returns and Hills on Generalized Dyck Paths, Journal of Integer Sequences, Vol. 19, 2016, #16.6.1.
P. Flajolet and M. Noy, Analytic combinatorics of non-crossing configurations, Discrete Math., 204, 203-229, 1999.
M. Noy, Enumeration of noncrossing trees on a circle, Discrete Math., 180, 301-313, 1998.
FORMULA
T(n, k) = Sum_{i=0..n-k} (-1)^i*((k+i+1)/(2n-k-i+1)) binomial(k+i, i) binomial(3n-2k-2i, n-k-i) for 0 <= k <= n.
G.f.: g/(1+z*g-t*z*g), where g = 1+z*g^3.
EXAMPLE
Triangle begins:
1;
0, 1;
2, 0, 1;
7, 4, 0, 1;
34, 14, 6, 0, 1;
171, 72, 21, 8, 0, 1;
...
MAPLE
T:=proc(n, k) if k<=n then sum((-1)^i*(k+i+1)*binomial(k+i, i)*binomial(3*n-2*k-2*i, n-k-i)/(2*n-k-i+1), i=0..n-k) else 0 fi end: for n from 0 to 10 do seq(T(n, k), k=0..n) od; # yields sequence in triangular form
MATHEMATICA
t[n_, k_] := Sum[(-1)^i*(k + i + 1)/(2n - k - i + 1)*Binomial[k + i, i]* Binomial[3n - 2k - 2i, n - k - i], {i, 0, n - k}]; Table[t[n, k], {n, 0, 10}, {k, 0, n}] // Flatten (* Jean-François Alcover, Jan 21 2013, after Maple *)
PROG
(PARI) T(n, k) = sum(i=0, n-k, (-1)^i*(k+i+1)*binomial(k+i, i)*binomial(3*n-2*k-2*i, n-k-i)/(2*n-k-i+1)); \\ Andrew Howroyd, Nov 06 2017
CROSSREFS
Columns k=0..2 give A023053, A374835, A374836.
Row sums give A001764.
Cf. A065600.
Sequence in context: A341200 A300130 A378974 * A325754 A154974 A342981
KEYWORD
nonn,tabl
AUTHOR
Emeric Deutsch, Jan 14 2005
STATUS
approved