OFFSET
0,4
COMMENTS
Row n has n+1 terms.
LINKS
Andrew Howroyd, Table of n, a(n) for n = 0..1274
Naiomi Cameron and J. E. McLeod, Returns and Hills on Generalized Dyck Paths, Journal of Integer Sequences, Vol. 19, 2016, #16.6.1.
P. Flajolet and M. Noy, Analytic combinatorics of non-crossing configurations, Discrete Math., 204, 203-229, 1999.
M. Noy, Enumeration of noncrossing trees on a circle, Discrete Math., 180, 301-313, 1998.
FORMULA
T(n, k) = Sum_{i=0..n-k} (-1)^i*((k+i+1)/(2n-k-i+1)) binomial(k+i, i) binomial(3n-2k-2i, n-k-i) for 0 <= k <= n.
G.f.: g/(1+z*g-t*z*g), where g = 1+z*g^3.
EXAMPLE
Triangle begins:
1;
0, 1;
2, 0, 1;
7, 4, 0, 1;
34, 14, 6, 0, 1;
171, 72, 21, 8, 0, 1;
...
MAPLE
T:=proc(n, k) if k<=n then sum((-1)^i*(k+i+1)*binomial(k+i, i)*binomial(3*n-2*k-2*i, n-k-i)/(2*n-k-i+1), i=0..n-k) else 0 fi end: for n from 0 to 10 do seq(T(n, k), k=0..n) od; # yields sequence in triangular form
MATHEMATICA
t[n_, k_] := Sum[(-1)^i*(k + i + 1)/(2n - k - i + 1)*Binomial[k + i, i]* Binomial[3n - 2k - 2i, n - k - i], {i, 0, n - k}]; Table[t[n, k], {n, 0, 10}, {k, 0, n}] // Flatten (* Jean-François Alcover, Jan 21 2013, after Maple *)
PROG
(PARI) T(n, k) = sum(i=0, n-k, (-1)^i*(k+i+1)*binomial(k+i, i)*binomial(3*n-2*k-2*i, n-k-i)/(2*n-k-i+1)); \\ Andrew Howroyd, Nov 06 2017
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
Emeric Deutsch, Jan 14 2005
STATUS
approved