login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Numbers k such that (A003961(k)-2*k) divides (A003961(k)-sigma(k)), where A003961 is fully multiplicative with a(prime(i)) = prime(i+1), and sigma is the sum of divisors function.
13

%I #23 Dec 19 2024 07:30:27

%S 1,2,3,4,6,7,10,25,26,28,33,46,55,57,69,91,93,496,1034,1054,1558,2211,

%T 2626,4825,8128,11222,12046,12639,28225,32043,68727,89575,970225,

%U 1392386,2245557,8550146,12371554,16322559,22799825,33550336,48980427,51326726,55037217,60406599,68258725,142901438,325422273,342534446

%N Numbers k such that (A003961(k)-2*k) divides (A003961(k)-sigma(k)), where A003961 is fully multiplicative with a(prime(i)) = prime(i+1), and sigma is the sum of divisors function.

%C Numbers k such that A252748(k) divides A286385(k).

%C Conjecture: Apart from a(5)=6, this is a subsequence of A319630, i.e., for all terms k<>6, gcd(k, A003961(k)) = 1. See also A372562, A372566.

%H Amiram Eldar, <a href="/A378980/b378980.txt">Table of n, a(n) for n = 1..69</a> (terms below 10^11; terms 1..60 from Antti Karttunen)

%H <a href="/index/Pri#prime_indices">Index entries for sequences related to prime indices in the factorization of n</a>.

%H <a href="/index/Si#SIGMAN">Index entries for sequences related to sigma(n)</a>.

%t f1[p_, e_] := (p^(e + 1) - 1)/(p - 1); f2[p_, e_] := NextPrime[p]^e; q[k_] := Module[{fct = FactorInteger[k], m, s}, s = Times @@ f1 @@@ fct; m = Times @@ f2 @@@ fct; Divisible[m - s, m - 2*k]]; q[1] = True; Select[Range[10^5], q] (* _Amiram Eldar_, Dec 19 2024 *)

%o (PARI)

%o A003961(n) = { my(f = factor(n)); for(i=1, #f~, f[i, 1] = nextprime(f[i, 1]+1)); factorback(f); };

%o A378981(n) = { my(u=A003961(n)); ((u-sigma(n))%((2*n)-u)); };

%o isA378980(n) = !A378981(n);

%Y Cf. A000203, A003961, A252748, A286385, A319630, A372562, A372566.

%Y Positions of 0's in A378981.

%Y Subsequence of A263837.

%Y Subsequences: A000396, A048674, A348514, A326134, A349753 (odd terms of this sequence).

%Y Cf. also A378983.

%K nonn

%O 1,2

%A _Antti Karttunen_, Dec 12 2024