login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A377506
a(n) is the nearest integer to 1/gamma(x_n), where x_n is the n-th extrema of gamma(x).
1
1, 0, 0, -1, 4, -19, 107, -716, 5498, -47789, 463517, -4962289, 58115593, -739030560, 10140362326, -149320366368, 2348685116841, -39299792354491, 697018000148170, -13061370974841665, 257854085426453001, -5349016057902489052, 116324040001711961903, -2646269955793816322943, 62852365790563502907461
OFFSET
1,5
COMMENTS
a(n) approximately equals round(1/gamma(-n+ arctan(pi/log(n)) / pi)).
This sequence shows how rapidly the extrema of the gamma function approach the real axis on the negative side.
EXAMPLE
a(0) = round(1/Γ(x_0)) = round(1/Γ(1.4616321449683622)) = round(1/0.8856031944108887) = 1
a(1) = round(1/Γ(x_1)) = round(1/Γ(-0.5040830082644554)) = round(1/-3.544643611155005) = 0
where x_m is the m-th extrema of gamma(x) or equivalently the m-th root of digamma(x).
MATHEMATICA
a[n_] := Module[{root},
root = FindRoot[PolyGamma[0, x] == 0, {x, -n + 10^-10, -n + 0.5}, WorkingPrecision -> 100];
Round[1/Gamma[x /. root]]
]
Table[a[n], {n, 0, 24}]
PROG
(Python)
from mpmath import findroot, digamma, mp, iv
mp.dps = iv.dps = 30
def generate_sequence(n):
seq, gamma_extrema = [], 1.4616321449683622
for i in range(n):
gamma_extrema = findroot(lambda x: digamma(x+1), x0=gamma_extrema-1)
reci_gamma = iv.rgamma(gamma_extrema+1)
gamma_extrema = -mp.fabs(gamma_extrema)
assert -i-1 < -mp.fabs(gamma_extrema) < -i-0.4
nint_reci = mp.nint(reci_gamma.a)
assert nint_reci == mp.nint(reci_gamma.b)
seq.append(int(nint_reci))
return seq
A377506 = generate_sequence(n=25)
CROSSREFS
Cf. A374856.
Sequence in context: A249934 A174992 A182541 * A241839 A218183 A206227
KEYWORD
sign,changed
AUTHOR
Jwalin Bhatt, Oct 30 2024
STATUS
approved