OFFSET
1,5
COMMENTS
a(n) approximately equals round(1/gamma(-n+ arctan(pi/log(n)) / pi)).
This sequence shows how rapidly the extrema of the gamma function approach the real axis on the negative side.
LINKS
EXAMPLE
a(0) = round(1/Γ(x_0)) = round(1/Γ(1.4616321449683622)) = round(1/0.8856031944108887) = 1
a(1) = round(1/Γ(x_1)) = round(1/Γ(-0.5040830082644554)) = round(1/-3.544643611155005) = 0
where x_m is the m-th extrema of gamma(x) or equivalently the m-th root of digamma(x).
MATHEMATICA
a[n_] := Module[{root},
root = FindRoot[PolyGamma[0, x] == 0, {x, -n + 10^-10, -n + 0.5}, WorkingPrecision -> 100];
Round[1/Gamma[x /. root]]
]
Table[a[n], {n, 0, 24}]
PROG
(Python)
from mpmath import findroot, digamma, mp, iv
mp.dps = iv.dps = 30
def generate_sequence(n):
seq, gamma_extrema = [], 1.4616321449683622
for i in range(n):
gamma_extrema = findroot(lambda x: digamma(x+1), x0=gamma_extrema-1)
reci_gamma = iv.rgamma(gamma_extrema+1)
gamma_extrema = -mp.fabs(gamma_extrema)
assert -i-1 < -mp.fabs(gamma_extrema) < -i-0.4
nint_reci = mp.nint(reci_gamma.a)
assert nint_reci == mp.nint(reci_gamma.b)
seq.append(int(nint_reci))
return seq
A377506 = generate_sequence(n=25)
CROSSREFS
KEYWORD
sign,changed
AUTHOR
Jwalin Bhatt, Oct 30 2024
STATUS
approved