login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) is the nearest integer to 1/gamma(x_n), where x_n is the n-th extrema of gamma(x).
1

%I #33 Jan 12 2025 17:29:24

%S 1,0,0,-1,4,-19,107,-716,5498,-47789,463517,-4962289,58115593,

%T -739030560,10140362326,-149320366368,2348685116841,-39299792354491,

%U 697018000148170,-13061370974841665,257854085426453001,-5349016057902489052,116324040001711961903,-2646269955793816322943,62852365790563502907461

%N a(n) is the nearest integer to 1/gamma(x_n), where x_n is the n-th extrema of gamma(x).

%C a(n) approximately equals round(1/gamma(-n+ arctan(pi/log(n)) / pi)).

%C This sequence shows how rapidly the extrema of the gamma function approach the real axis on the negative side.

%H Wikipedia, <a href="https://en.wikipedia.org/wiki/Gamma_function#Minima_and_maxima">Gamma Extrema</a>

%H Wikipedia, <a href="https://en.wikipedia.org/wiki/Digamma_function#Roots_of_the_digamma_function">Digamma Roots</a>

%e a(0) = round(1/Γ(x_0)) = round(1/Γ(1.4616321449683622)) = round(1/0.8856031944108887) = 1

%e a(1) = round(1/Γ(x_1)) = round(1/Γ(-0.5040830082644554)) = round(1/-3.544643611155005) = 0

%e where x_m is the m-th extrema of gamma(x) or equivalently the m-th root of digamma(x).

%t a[n_] := Module[{root},

%t root = FindRoot[PolyGamma[0, x] == 0, {x, -n + 10^-10, -n + 0.5}, WorkingPrecision -> 100];

%t Round[1/Gamma[x /. root]]

%t ]

%t Table[a[n], {n, 0, 24}]

%o (Python)

%o from mpmath import findroot, digamma, mp, iv

%o mp.dps = iv.dps = 30

%o def generate_sequence(n):

%o seq, gamma_extrema = [], 1.4616321449683622

%o for i in range(n):

%o gamma_extrema = findroot(lambda x: digamma(x+1), x0=gamma_extrema-1)

%o reci_gamma = iv.rgamma(gamma_extrema+1)

%o gamma_extrema = -mp.fabs(gamma_extrema)

%o assert -i-1 < -mp.fabs(gamma_extrema) < -i-0.4

%o nint_reci = mp.nint(reci_gamma.a)

%o assert nint_reci == mp.nint(reci_gamma.b)

%o seq.append(int(nint_reci))

%o return seq

%o A377506 = generate_sequence(n=25)

%Y Cf. A374856.

%K sign,changed

%O 1,5

%A _Jwalin Bhatt_, Oct 30 2024