login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A377507
Expansion of e.g.f. exp(Sum_{k>=1} phi(k)^2 * x^k/k), where phi is the Euler totient function A000010.
3
1, 1, 2, 12, 66, 690, 4860, 63000, 711900, 8876700, 131405400, 2160219600, 37553808600, 686750664600, 13805424032400, 278759396916000, 6445702905642000, 150985820419434000, 3825993309462324000, 99427990563910008000, 2724045313186016820000, 78032929885709378580000
OFFSET
0,3
LINKS
FORMULA
log(a(n)/n!) ~ 3 * c^(1/3) * n^(2/3) / 2^(2/3), where c = Product_{p primes} (1 - 2/p^2 + 1/p^3) = A065464 = 0.428249505677094440218765707581823546121298...
MATHEMATICA
nmax = 25; $RecursionLimit->Infinity; a[n_]:=a[n]=If[n==0, 1, Sum[EulerPhi[k]^2*a[n-k], {k, 1, n}]/n]; Table[a[n]*n!, {n, 0, nmax}]
nmax = 25; CoefficientList[Series[Exp[Sum[EulerPhi[k]^2 * x^k / k, {k, 1, nmax}]], {x, 0, nmax}], x] * Range[0, nmax]!
CROSSREFS
KEYWORD
nonn
AUTHOR
Vaclav Kotesovec, Oct 30 2024
STATUS
approved