login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A377508
Expansion of e.g.f. exp(Sum_{k>=1} phi(k)^3 * x^k/k), where phi is the Euler totient function A000010.
3
1, 1, 2, 20, 122, 2122, 15532, 284104, 3837500, 52963964, 1125315224, 20981180464, 500475045688, 10373180665720, 264908485440848, 6624880728277088, 185812008437953808, 5449866267968244496, 167510440639938875680, 5447433174773217714496, 177500241844579492474016
OFFSET
0,3
LINKS
FORMULA
log(a(n)/n!) ~ 2^(9/4) * c^(1/4) * n^(3/4) / 3^(3/4), where c = Product_{p primes} (1 - 3/p^2 + 3/p^3 - 1/p^4) = 0.337187873791589971961692816152158244949154127758...
MATHEMATICA
nmax = 25; $RecursionLimit->Infinity; a[n_]:=a[n]=If[n==0, 1, Sum[EulerPhi[k]^3*a[n-k], {k, 1, n}]/n]; Table[a[n]*n!, {n, 0, nmax}]
nmax = 25; CoefficientList[Series[Exp[Sum[EulerPhi[k]^3 * x^k / k, {k, 1, nmax}]], {x, 0, nmax}], x] * Range[0, nmax]!
CROSSREFS
KEYWORD
nonn
AUTHOR
Vaclav Kotesovec, Oct 30 2024
STATUS
approved