login
A376634
Triangle read by rows: T(n, k) = Sum_{i=0..n-k} Stirling1(i + m, m)*binomial(n+m+1, n-k-i)*(n + m - k)!/(i + m)!, for m = 2.
0
1, 9, 1, 71, 12, 1, 580, 119, 15, 1, 5104, 1175, 179, 18, 1, 48860, 12154, 2070, 251, 21, 1, 509004, 133938, 24574, 3325, 335, 24, 1, 5753736, 1580508, 305956, 44524, 5000, 431, 27, 1, 70290936, 19978308, 4028156, 617624, 74524, 7155, 539, 30, 1, 924118272, 270074016, 56231712, 8969148, 1139292, 117454, 9850, 659, 33, 1, 13020978816, 3894932448, 832391136, 136954044, 18083484, 1961470, 176554, 13145, 791, 36, 1
OFFSET
0,2
COMMENTS
The columns of the triangle T(m,n,k) represent the coefficients of the asymptotic expansion of the higher order exponential integral E(x,m+1,k+2), for m=2, k>=0. For reference see. A163931.
LINKS
Igor Victorovich Statsenko, Relationships of P-generalized Stirling numbers of the first kind with other generalized Stirling numbers, Innovation science No 10-1, State Ufa, Aeterna Publishing House, 2024, pp. 19-22. In Russian.
EXAMPLE
Triangle starts:
[0] 1;
[1] 9, 1;
[2] 71, 12, 1;
[3] 580, 119, 15, 1;
[4] 5104, 1175, 179, 18, 1;
[5] 48860, 12154, 2070, 251, 21, 1;
[6] 509004, 133938, 24574, 3325, 335, 24, 1;
[7] 5753736, 1580508, 305956, 44524, 5000, 431, 27, 1;
MAPLE
T:=(m, n, k)->add(Stirling1(i+m, m)*binomial(n+m+1, n-k-i)*(n+m-k)!/(i+m)!, i=0..n-k):m:=2:seq(seq(T(m, n, k), k=0..n), n=0..10);
CROSSREFS
Column k: A001706 (k=0), A001712 (k=1), A001717 (k=2), A001722 (k=3), A051525 (k=4), A051546 (k=5), A051561 (k=6).
Cf. A094587 and A173333 for m=0, A376582 for m=1.
Sequence in context: A306557 A283060 A283082 * A318935 A347490 A038291
KEYWORD
nonn,tabl
AUTHOR
STATUS
approved