login
A051561
Third unsigned column of triangle A051379.
2
0, 0, 1, 27, 539, 9850, 176554, 3197348, 59354028, 1137868848, 22614500016, 466814750688, 10015620672672, 223359393479040, 5175622796192640, 124533006364442880, 3109120944743427840, 80473740053567016960
OFFSET
0,4
COMMENTS
From Johannes W. Meijer, Oct 20 2009: (Start)
The asymptotic expansion of the higher order exponential integral E(x,m=3,n=8) ~ exp(-x)/x^3*(1 - 27/x + 539/x^2 - 9850/x^3 + 176554/x^4 + ...) leads to the sequence given above. See A163931 and A163932 for more information.
(End)
REFERENCES
Mitrinovic, D. S. and Mitrinovic, R. S. see reference given for triangle A051379.
FORMULA
a(n) = A051379(n, 2)*(-1)^n; e.g.f.: ((log(1-x))^2)/(2*(1-x)^8).
If we define f(n,i,a)=sum(binomial(n,k)*stirling1(n-k,i)*product(-a-j,j=0..k-1),k=0..n-i), then a(n) = |f(n,2,8)|, for n>=1. - Milan Janjic, Dec 21 2008
MATHEMATICA
With[{nn=20}, CoefficientList[Series[(Log[1-x])^2/(2(1-x)^8), {x, 0, nn}], x] Range[0, nn]!] (* Harvey P. Dale, Jul 10 2013 *)
CROSSREFS
Cf. A049388 (m=0), A051560 (m=1) unsigned columns.
Sequence in context: A215039 A014928 A163199 * A163197 A347591 A267544
KEYWORD
easy,nonn
STATUS
approved