login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A051562 Second unsigned column of triangle A051380. 17
0, 1, 19, 299, 4578, 71394, 1153956, 19471500, 343976400, 6366517200, 123418922400, 2503748556000, 53091962697600, 1175271048201600, 27123099523027200, 651708291206649600, 16282170039031142400 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,3

COMMENTS

From Johannes W. Meijer, Oct 20 2009: (Start)

The asymptotic expansion of the higher order exponential integral E(x,m=2,n=9) ~ exp(-x)/x^2*(1 - 19/x + 299/x^2 - 4578/x^3 + 71394/x^4 - 1153956/x^5 + 19471500/x^6 - ...) leads to the sequence given above. See A163931 and A028421 for more information.

(End)

REFERENCES

Mitrinovic, D. S. and Mitrinovic, R. S. see reference given for triangle A051380.

LINKS

G. C. Greubel, Table of n, a(n) for n = 0..440

FORMULA

a(n) = A051380(n, 2)*(-1)^(n-1).

E.g.f.: -log(1-x)/(1-x)^9.

a(n) = n!*Sum_{k=0..n-1} ((-1)^k*binomial(-9,k)/(n-k)), for n>=1. - Milan Janjic, Dec 14 2008

a(n) = n!*[8]h(n), where [k]h(n) denotes the k-th successive summation of the harmonic numbers from 0 to n. - Gary Detlefs Jan 04 2011

MATHEMATICA

f[k_] := k + 8; t[n_] := Table[f[k], {k, 1, n}]

a[n_] := SymmetricPolynomial[n - 1, t[n]]

Table[a[n], {n, 1, 16}]

(* Clark Kimberling, Dec 29 2011 *)

CROSSREFS

Cf. A049389 (first unsigned column).

Related to n!*the k-th successive summation of the harmonic numbers: k=0..A000254, k=1..A001705, k= 2..A001711, k=3..A001716, k=4..A001721, k=5..A051524, k=6..A051545, k=7..A051560, k=8..A051562, k=9..A051564. - Gary Detlefs Jan 04 2011

Sequence in context: A155017 A199245 A152591 * A330846 A324359 A074460

Adjacent sequences:  A051559 A051560 A051561 * A051563 A051564 A051565

KEYWORD

easy,nonn

AUTHOR

Wolfdieter Lang

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified September 21 16:31 EDT 2021. Contains 347598 sequences. (Running on oeis4.)