The OEIS is supported by the many generous donors to the OEIS Foundation.

 Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 59th year, we have over 358,000 sequences, and we’ve crossed 10,300 citations (which often say “discovered thanks to the OEIS”). Other ways to Give
 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A155017 a(n) = 10*a(n-1) + 90*a(n-2), n>2 ; a(0)=1, a(1)=1, a(2)=19 . 2
 1, 1, 19, 280, 4510, 70300, 1108900, 17416000, 273961000, 4307050000, 67726990000, 1064904400000, 16744473100000, 263286127000000, 4139863849000000, 65094389920000000, 1023531645610000000 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 COMMENTS 10^(floor((n - 2)/2)) | a(n) for n>=1. - G. C. Greubel, Dec 30 2017 LINKS G. C. Greubel, Table of n, a(n) for n = 0..825 Index entries for linear recurrences with constant coefficients, signature (10, 90). FORMULA G.f.: (1-9*x-81*x^2)/(1-10*x-90*x^2). a(n+1) = Sum_{k=0..n} A154929(n,k)*9^(n-k). a(n) = (7/115)*sqrt(115)*{[5+sqrt(115)]^(n-1)-[5-sqrt(115)]^(n-1)}+(1/2)*{[5-sqrt(115)]^(n-1)+[5+sqrt(115)]^(n-1)}+(9/10)*[C(2*n,n) mod 2], with n>=0. - Paolo P. Lava, Jan 26 2009 MATHEMATICA Join[{1}, LinearRecurrence[{10, 90}, {1, 19}, 20]] (* Harvey P. Dale, Oct 10 2012 *) CoefficientList[Series[(1 - 9*x - 81*x^2)/(1 - 10*x - 90*x^2), {x, 0, 50}], x] (* G. C. Greubel, Dec 30 2017 *) PROG (PARI) x='x+O('x^30); Vec((1-9*x-81*x^2)/(1-10*x-90*x^2)) \\ G. C. Greubel, Dec 30 2017 (Magma) I:=[1, 1, 19]; [1] cat [n le 2 select I[n] else 10*Self(n-1) + 90*Self(n-2): n in [1..30]]; // G. C. Greubel, Dec 30 2017 CROSSREFS Sequence in context: A322053 A328916 A081045 * A199245 A152591 A051562 Adjacent sequences: A155014 A155015 A155016 * A155018 A155019 A155020 KEYWORD nonn AUTHOR Philippe Deléham, Jan 19 2009 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 3 23:05 EST 2022. Contains 358543 sequences. (Running on oeis4.)