OFFSET
0,3
COMMENTS
The asymptotic expansion of the higher order exponential integral E(x,m=2,n=10) ~ exp(-x)/x^2*(1 - 21/x + 362/x^2 - 6026/x^3 + 101524/x^4 - 1763100/x^5 + 31813200/x^6 - ...) leads to the sequence given above. See A163931 and A028421 for more information. - Johannes W. Meijer, Oct 20 2009
REFERENCES
Mitrinovic, D. S. and Mitrinovic, R. S. see reference given for triangle A051523.
LINKS
G. C. Greubel, Table of n, a(n) for n = 0..440
FORMULA
a(n) = A051523(n, 2)*(-1)^(n-1).
E.g.f.: -log(1-x)/(1-x)^10.
a(n) = n!*Sum_{k=0..n-1}((-1)^k*binomial(-10,k)/(n-k)), for n>=1. - Milan Janjic, Dec 14 2008
a(n) = n!*[9]h(n), where [k]h(n) denotes the k-th successive summation of the harmonic numbers from 0 to n. - Gary Detlefs, Jan 04 2011
MATHEMATICA
f[n_] := n!*Sum[(-1)^k*Binomial[-10, k]/(n - k), {k, 0, n - 1}]; Array[f, 17, 0]
Range[0, 16]! CoefficientList[ Series[-Log[(1 - x)]/(1 - x)^10, {x, 0, 16}], x]
(* Or, using elementary symmetric functions: *)
f[k_] := k + 9; t[n_] := Table[f[k], {k, 1, n}]
a[n_] := SymmetricPolynomial[n - 1, t[n]]
Table[a[n], {n, 1, 16}]
(* Clark Kimberling, Dec 29 2011 *)
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
STATUS
approved