login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A376633
T(n,k) is the number of nonisomorphic n-element self-dual posets (or partially ordered sets) with k arcs in the Hasse diagram, irregular triangle read by rows.
1
1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 1, 1, 2, 3, 5, 2, 1, 1, 1, 2, 4, 9, 11, 12, 5, 4, 1, 1, 1, 2, 4, 10, 16, 26, 22, 21, 10, 5, 0, 1, 1, 1, 2, 4, 11, 20, 44, 65, 98, 86, 79, 41, 25, 8, 4, 2, 2, 1, 1, 2, 4, 11, 21, 51, 92, 175, 220, 276, 237, 208, 103, 67, 25, 18, 5, 3, 0, 1, 1, 1, 2, 4, 11, 22, 55, 114, 264, 462, 798, 1015, 1294, 1180, 1035, 676, 477, 243, 149, 57, 36, 13, 8, 2, 4, 1, 1, 1, 2, 4, 11, 22, 56, 121, 303, 614, 1264, 2042, 2348, 3995, 4755, 4272, 3910, 2680, 1977, 1078, 697, 300, 189, 60, 50, 15, 12, 0, 3, 0, 1
OFFSET
1,9
COMMENTS
Posets whose Hasse diagram looks the same if it is turned upside down.
The dual poset P* of the poset P is defined by: s ≤ t in P* if and only if t ≤ s in P. If P and P* are isomorphic, then P is called self-dual.
REFERENCES
R. P. Stanley, Enumerative Combinatorics I, 2nd. ed., pp. 277.
EXAMPLE
The table starts:
1 ;
1 1 ;
1 1 1 ;
1 1 2 2 2 ;
1 1 2 3 5 2 1 ;
1 1 2 4 9 11 12 5 4 1 ;
1 1 2 4 10 16 26 22 21 10 5 0 1 ;
1 1 2 4 11 20 44 65 98 86 79 41 25 8 4 2 2 ;
1 1 2 4 11 21 51 92 175 220 276 237 208 103 67 25 18 5 3 0 1 ;
1 1 2 4 11 22 55 114 264 462 798 1015 1294 1180 1035 676 477 243 149 57 36 13 8 2 4 1;
...
CROSSREFS
Row sums: A133983.
Sequence in context: A356997 A171412 A248213 * A317682 A216651 A071338
KEYWORD
nonn,tabf
AUTHOR
Rico Zöllner and Konrad Handrich, Sep 30 2024
STATUS
approved