OFFSET
1,3
COMMENTS
Abuse of notation: we write T(n, L) for T(n, k), where L is the k-th partition of n in A-St order.
For any permutation (e_1,...,e_r) of the parts of L, T(n, L) is the number of chains of subspaces 0 < V_1 < ··· < V_r = (F_8)^n with dimension increments (e_1,...,e_r).
REFERENCES
R. P. Stanley, Enumerative Combinatorics (vol. 1), Cambridge University Press (1997), Section 1.3.
LINKS
Álvar Ibeas, First 20 rows, flattened
FORMULA
T(n, (n)) = 1. T(n, L) = A022172(n, e) * T(n - e, L \ {e}), if L is a partition of n and e < n is a part of L.
EXAMPLE
The number of subspace chains 0 < V_1 < V_2 < (F_8)^3 is 657 = T(3, (1, 1, 1)). There are 73 = A022172(3, 1) choices for a one-dimensional subspace V_1 and, for each of them, 9 = A022172(2, 1) extensions to a two-dimensional subspace V_2.
Triangle begins:
k: 1 2 3 4 5
-----------------------
n=1: 1
n=2: 1 9
n=3: 1 73 657
n=4: 1 585 4745 42705 384345
CROSSREFS
KEYWORD
nonn,tabf
AUTHOR
Álvar Ibeas, Sep 03 2021
STATUS
approved