login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A347493
a(0) = 1, a(1) = 0, a(2) = a(3) = 1; thereafter, a(n) = a(n-1) + a(n-2) + a(n-4).
1
1, 0, 1, 1, 3, 4, 8, 13, 24, 41, 73, 127, 224, 392, 689, 1208, 2121, 3721, 6531, 11460, 20112, 35293, 61936, 108689, 190737, 334719, 587392, 1030800, 1808929, 3174448, 5570769, 9776017, 17155715, 30106180, 52832664, 92714861, 162703240, 285524281, 501060185, 879299327, 1543062752
OFFSET
0,5
COMMENTS
a(n) is also the number of ways to tile a strip of length n with squares, dominoes, and tetrominoes such that the first tile is NOT a square. As such, it completes the set of such tilings with A005251 (first tile is NOT a domino), A005314 (first tile is NOT a tetromino), and A060945 (no restrictions on first tile).
LINKS
Jean-Luc Baril, Sergey Kirgizov, and Armen Petrossian, Dyck Paths with catastrophes modulo the positions of a given pattern, Australasian J. Comb. (2022) Vol. 84, No. 2, 398-418.
FORMULA
a(n) = 2*A060945(n) - A005251(n) - A005314(n).
G.f.: (1 - x)/(1 - x - x^2 - x^4).
Sum_{k=0..n} a(k)*F(n-k) = a(n+3) - F(n+2) for F(n)=A000045(n) the Fibonacci numbers.
5*a(n) = 2*(-1)^n + 3*A005314(n+1) -4*A005314(n) +2*A005314(n-1). - R. J. Mathar, Sep 30 2021
MATHEMATICA
CoefficientList[Series[(1 - x)/(1 - x - x^2 - x^4), {x, 0, 40}], x] (* Michael De Vlieger, Mar 04 2022 *)
LinearRecurrence[{1, 1, 0, 1}, {1, 0, 1, 1}, 60] (* Harvey P. Dale, Aug 17 2023 *)
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Greg Dresden and Yichen P. Wang, Sep 03 2021
STATUS
approved