login
A376305
Run-compression of the sequence of first differences of squarefree numbers.
19
1, 2, 1, 3, 1, 2, 1, 2, 1, 3, 1, 2, 1, 2, 1, 2, 1, 3, 1, 4, 2, 1, 2, 1, 3, 1, 2, 1, 2, 1, 3, 1, 3, 1, 2, 1, 2, 1, 2, 4, 1, 2, 1, 2, 1, 2, 1, 3, 1, 3, 1, 4, 2, 1, 2, 1, 3, 1, 2, 1, 2, 1, 3, 2, 3, 1, 2, 1, 2, 1, 3, 1, 3, 1, 2, 1, 2, 1, 3, 1, 2, 1, 2, 1, 2, 1, 3
OFFSET
1,2
COMMENTS
We define the run-compression of a sequence to be the anti-run obtained by reducing each run of repeated parts to a single part. Alternatively, run-compression removes all parts equal to the part immediately to their left. For example, (1,1,2,2,1) has run-compression (1,2,1).
EXAMPLE
The sequence of squarefree numbers (A005117) is:
1, 2, 3, 5, 6, 7, 10, 11, 13, 14, 15, 17, 19, 21, 22, 23, 26, 29, 30, ...
The sequence of first differences (A076259) of squarefree numbers is:
1, 1, 2, 1, 1, 3, 1, 2, 1, 1, 2, 2, 2, 1, 1, 3, 3, 1, 1, 2, 1, 1, 2, 1, ...
The run-compression is A376305 (this sequence).
MATHEMATICA
First/@Split[Differences[Select[Range[100], SquareFreeQ]]]
CROSSREFS
This is the run-compression of first differences of A005117.
For prime instead of squarefree numbers we have A037201, halved A373947.
Before compressing we had A076259, ones A375927.
For run-lengths instead of compression we have A376306.
For run-sums instead of compression we have A376307.
For prime-powers instead of squarefree numbers we have A376308.
For positions of first appearances instead of compression we have A376311.
The version for nonsquarefree numbers is A376312.
Positions of 1's are A376342.
A000040 lists the prime numbers, differences A001223.
A000961 and A246655 list prime-powers, differences A057820.
A003242 counts compressed or anti-run compositions, ranks A333489.
A005117 lists squarefree numbers, differences A076259.
A013929 lists nonsquarefree numbers, differences A078147.
A116861 counts partitions by compressed sum, by compressed length A116608.
A274174 counts contiguous compositions, ranks A374249.
Sequence in context: A349258 A349326 A185894 * A214180 A343073 A184166
KEYWORD
nonn
AUTHOR
Gus Wiseman, Sep 20 2024
STATUS
approved