OFFSET
0,7
COMMENTS
By convention, there is 1 ring with no elements. The first value that I don't know is a(32), where the number of rings with 32 elements was said by Christof Noebauer in 2000 to be > 18590. The next value not known to me is a(64), which is where the same source gives the number of rings with 64 elements > 829826. The articles by Christof Noebauer are linked to from A027623.
LINKS
Eric W. Weisstein Ring
EXAMPLE
a(16) = 4 because there are A027623(16) = 390 rings with 16 elements, and 390 = 2 * 3 * 5 * 13 has 4 prime divisors counted with multiplicity (in this example, each has multiplicity of 1).
CROSSREFS
KEYWORD
nonn,more,hard
AUTHOR
Jonathan Vos Post, Feb 05 2011
STATUS
approved