login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A375766
The maximum exponent in the prime factorization of the numbers whose exponents in their prime factorization are all Fibonacci numbers.
3
0, 1, 1, 2, 1, 1, 1, 3, 2, 1, 1, 2, 1, 1, 1, 1, 2, 1, 2, 1, 1, 1, 3, 2, 1, 3, 2, 1, 1, 1, 5, 1, 1, 1, 2, 1, 1, 1, 3, 1, 1, 1, 2, 2, 1, 1, 2, 2, 1, 2, 1, 3, 1, 3, 1, 1, 1, 2, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 3, 1, 1, 2, 2, 1, 1, 1, 1, 1, 2, 1, 1, 1, 3, 1, 2, 1, 2, 1, 1, 1, 5, 1, 2, 2, 2, 1, 1, 1, 3, 1, 1, 1, 3, 1, 1
OFFSET
1,4
COMMENTS
First differs from A375768 at n = 2448.
All the terms are Fibonacci numbers by definition.
LINKS
FORMULA
a(n) = A051903(A115063(n)).
a(n) = A000045(A375767(n)).
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = (1/zeta(2) + Sum_{k>=3} (Fibonacci(k) * (d(k) - d(k-1)))) / A375274 = 1.52546070254904121983..., where d(k) = Product_{p prime} ((1-1/p)*(1 + Sum_{i=2..k} 1/p^Fibonacci(i))) for k >= 3, and d(2) = 1/zeta(2).
MATHEMATICA
fibQ[n_] := Or @@ IntegerQ /@ Sqrt[5*n^2 + {-4, 4}]; s[n_] := Module[{e = FactorInteger[n][[;; , 2]]}, If[AllTrue[e, fibQ], Max[e], Nothing]]; s[1] = 0; Array[s, 100]
PROG
(PARI) isfib(n) = issquare(5*n^2 - 4) || issquare(5*n^2 + 4);
lista(kmax) = {my(e, ans); print1(0, ", "); for(k = 2, kmax, e = factor(k)[, 2]; ans = 1; for(i = 1, #e, if(!isfib(e[i]), ans = 0; break)); if(ans, print1(vecmax(e), ", "))); }
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Amiram Eldar, Aug 27 2024
STATUS
approved