login
A375769
The indices of the terms of A375768 in the Fibonacci sequence.
3
0, 2, 2, 3, 2, 2, 2, 4, 3, 2, 2, 3, 2, 2, 2, 2, 3, 2, 3, 2, 2, 2, 4, 3, 2, 4, 3, 2, 2, 2, 5, 2, 2, 2, 3, 2, 2, 2, 4, 2, 2, 2, 3, 3, 2, 2, 3, 3, 2, 3, 2, 4, 2, 4, 2, 2, 2, 3, 2, 2, 3, 2, 2, 2, 3, 2, 2, 2, 4, 2, 2, 3, 3, 2, 2, 2, 2, 2, 3, 2, 2, 2, 4, 2, 3, 2, 3, 2, 2, 2, 5, 2, 3, 3, 3, 2, 2, 2, 4, 2, 2, 2, 4, 2, 2
OFFSET
1,2
COMMENTS
First differs from A375767 at n = 2448.
Since 1 appears twice in the Fibonacci sequence (1 = Fibonacci(1) = Fibonacci(2)), its index here is chosen to be 2.
LINKS
FORMULA
a(n) = A130233(A375768(n)).
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = (2/zeta(2) + Sum_{k>=3} (k * (1/zeta(Fibonacci(k)+1) - 1/zeta(Fibonacci(k)))) / d = 2.4999593748274972257073..., where d = 1/zeta(4) + Sum_{k>=5} (1/zeta(Fibonacci(k)+1) - 1/zeta(Fibonacci(k))) = 0.94462177878047854647... is the density of A369939.
If the chosen index for 1 is 1 instead of 2, then the asymptotic mean is (1/zeta(2) + Sum_{k>=3} (k * (1/zeta(Fibonacci(k)+1) - 1/zeta(Fibonacci(k)))) / d = 1.85639269500896710302009... .
MATHEMATICA
fibQ[n_] := Or @@ IntegerQ /@ Sqrt[5*n^2 + {-4, 4}]; A130233[n_] := Module[{k = 2}, While[Fibonacci[k] <= n, k++]; k-1]; s[n_] := Module[{e = Max[FactorInteger[n][[;; , 2]]]}, If[fibQ[e], A130233[e], Nothing]]; s[1] = 0; Array[s, 100]
PROG
(PARI) isfib(n) = issquare(5*n^2 - 4) || issquare(5*n^2 + 4);
A130233(n) = {my(k = 2); while(fibonacci(k) <= n, k++); k-1; }
lista(kmax) = {my(e); print1(0, ", "); for(k = 2, kmax, e = vecmax(factor(k)[, 2]); if(isfib(e), print1(A130233(e), ", "))); }
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Amiram Eldar, Aug 27 2024
STATUS
approved