OFFSET
1,2
COMMENTS
Since 1 appears twice in the Fibonacci sequence (1 = Fibonacci(1) = Fibonacci(2)), its index here is chosen to be 2.
LINKS
Amiram Eldar, Table of n, a(n) for n = 1..10000
FORMULA
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = 3 - 1/zeta(2) + Sum_{k>=4} (1 - 1/zeta(Fibonacci(k))) = 2.59996215929231584366... .
If the chosen index for 1 is 1 instead of 2, then the asymptotic mean is 3 - 2/zeta(2) + Sum_{k>=4} (1 - 1/zeta(Fibonacci(k))) = 1.99203505743828921499... .
EXAMPLE
For n = 16 = 2^4, the Zeckendorf representation of 4 is 101, i.e., 4 = Fibonacci(2) + Fibonacci(4). Therefore 16 = 2^(Fibonacci(2) + Fibonacci(4)) = 2^Fibonacci(2) * 2^Fibonacci(4), and a(16) = 4.
MATHEMATICA
PROG
CROSSREFS
KEYWORD
nonn,easy,base
AUTHOR
Amiram Eldar, Aug 15 2024
STATUS
approved