login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A375764
a(n) is the sum of distinct sums of all subsets with two or more elements of {1, 2, ..., n}.
1
0, 0, 3, 18, 52, 117, 228, 403, 663, 1032, 1537, 2208, 3078, 4183, 5562, 7257, 9313, 11778, 14703, 18142, 22152, 26793, 32128, 38223, 45147, 52972, 61773, 71628, 82618, 94827, 108342, 123253, 139653, 157638, 177307, 198762, 222108, 247453, 274908, 304587
OFFSET
0,3
COMMENTS
The cardinality of the set for n is A034856(n-1).
FORMULA
a(n) = A002817(n) - 3 for n > 1.
From Alois P. Heinz, Aug 27 2024: (Start)
G.f.: x^2*(2*x^4-7*x^3+8*x^2-3*x-3)/(x-1)^5.
a(n) = max(0,(n^4+2*n^3+3*n^2+2*n-24)/8). (End)
E.g.f.: exp(x)*(x^4/8 + x^3 + 2*x^2 + x - 3) + 2*x + 3. - Stefano Spezia, Aug 28 2024
EXAMPLE
For n = 3 the starting set is {1,2,3} and there are subsets {1,2}{1,3}{2,3}{1,2,3} that sum to 3,4,5 and 6 and the sum of distinct sums (3+4+5+6) is 18.
MATHEMATICA
Join[{0, 0}, Nest[PolygonalNumber, Range[2, 50], 2] - 3] (* Paolo Xausa, Sep 13 2024 *)
PROG
(Python)
a = lambda n: max(0, (n**4+2*n**3+3*n**2+2*n-24)//8)
print([a(n) for n in range(1, 40)])
(Python)
def A375764(n): return (m:=n*(n+1)-4)*(m+10)>>3 if n>1 else 0 # Chai Wah Wu, Aug 30 2024
CROSSREFS
Sequence in context: A064043 A267639 A238649 * A268484 A085789 A361083
KEYWORD
nonn,easy
AUTHOR
Darío Clavijo, Aug 26 2024
EXTENSIONS
More terms from Alois P. Heinz, Aug 27 2024
STATUS
approved