login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A115568
Maximal Fibonacci exponent in prime factorization of n, or 1 if there is no Fibonacci exponent.
3
1, 1, 1, 2, 1, 1, 1, 3, 2, 1, 1, 2, 1, 1, 1, 1, 1, 2, 1, 2, 1, 1, 1, 3, 2, 1, 3, 2, 1, 1, 1, 5, 1, 1, 1, 2, 1, 1, 1, 3, 1, 1, 1, 2, 2, 1, 1, 1, 2, 2, 1, 2, 1, 3, 1, 3, 1, 1, 1, 2, 1, 1, 2, 1, 1, 1, 1, 2, 1, 1, 1, 3, 1, 1, 2, 2, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 3, 1, 2, 1, 2, 1, 1, 1, 5, 1, 2, 2, 2
OFFSET
1,4
MATHEMATICA
Module[{fibs=Fibonacci[Range[10]]}, Table[Max[Select[FactorInteger[n][[All, 2]], MemberQ[fibs, #]&]]/.(-\[Infinity]->1), {n, 100}]] (* Harvey P. Dale, Apr 08 2022 *)
PROG
(PARI)
A010056(n) = { my(k=n^2); k+=(k+1)<<2; issquare(k) || (n>0 && issquare(k-8)); } \\ This function from Charles R Greathouse IV, Jul 30 2012
A115568(n) = { my(exps=factorint(n)[, 2], expswith1 = vector(1+length(exps), i, if(1==i, i, exps[i-1]))); vecmax(apply(e -> (A010056(e)*e), expswith1)); }; \\ Antti Karttunen, Jul 23 2017
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
Giovanni Teofilatto, Mar 11 2006; revised Mar 13 2006
EXTENSIONS
Corrected by R. J. Mathar, Apr 03 2012
STATUS
approved